• Title/Summary/Keyword: 기계독해

Search Result 66, Processing Time 0.023 seconds

A Design of HTML Tag Stack and HTML Embedding Method to Improve Web Document Question Answering Performance of BERT (BERT 의 웹 문서 질의 응답 성능 향상을 위한 HTML 태그 스택 및 HTML 임베딩 기법 설계)

  • Mok, Jin-Wang;Lee, Hyun-Seob
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.583-585
    • /
    • 2022
  • 최근 기술의 발전으로 인해 자연어 처리 모델의 성능이 증가하고 있다. 그에 따라 평문 지문이 아닌 KorQuAD 2.0 과 같은 웹 문서를 지문으로 하는 기계 독해 과제를 해결하려는 연구가 증가하고 있다. 최근 기계 독해 과제의 대부분의 모델은 트랜스포머를 기반으로 하는 추세를 보인다. 그 중 대표적인 모델인 BERT 는 문자열의 순서에 대한 정보를 임베딩 과정에서 전달받는다. 한편 웹 문서는 태그 구조가 존재하므로 문서를 이해하는데 위치 정보 외에도 태그 정보도 유용하게 사용될 수 있다. 그러나 BERT 의 기존 임베딩은 웹 문서의 태그 정보를 추가적으로 모델에 전달하지 않는다는 문제가 있었다. 본 논문에서는 BERT 에 웹 문서 태그 정보를 효과적으로 전달할 수 있는 HTML 임베딩 기법 및 이를 위한 전처리 기법으로 HTML 태그 스택을 소개한다. HTML 태그 스택은 HTML 태그의 정보들을 추출할 수 있고 HTML 임베딩 기법은 이 정보들을 BERT 의 임베딩 과정에 입력으로 추가함으로써 웹 문서 질의 응답 과제의 성능 향상을 기대할 수 있다.

Effectiveness of Project Based Learning in Mechanical Drawing Education Using CAD (CAD 활용 기계제도 교육에서 PBL 수업의 효과)

  • Lee, Hee Won
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.2
    • /
    • pp.125-130
    • /
    • 2014
  • Although the subject of Mechanical Drawing is very important in mechanical engineering education, it is hard to teach the subject effectively, because it needs to carry out lectures and labs in parallel and needs substantially large portion of CAD lab time. In the department of Mechanical Systems and Design Engineering of SNUST, Project Based Learning is adopted to teach the subject of Mechanical Drawing. In this course, students experience to read and to draw drawings through the PBL project after the lectures on mechanical drawings. In this way, they can learn by heart the drawing skills and the operation of CAD software tools. In this paper, various PBL projects and teaching methods carried out in recent years are presented and the effects of the projects are discussed.

TabQA : Question Answering Model for Table Data (TabQA : 표 양식의 데이터에 대한 질의응답 모델)

  • Park, Soyoon;Lim, Seungyoung;Kim, Myungji;Lee, Jooyoul
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.263-269
    • /
    • 2018
  • 본 논문에서는 실생활에서 쓰이는 다양한 구조를 갖는 문서에 대해서도 자연어 질의응답이 가능한 모델을 만들고자, 그 첫걸음으로 표에 대해 자연어 질의응답이 가능한 End-to-End 인공신경망 모델 TabQA를 제안한다. TabQA는 기존 연구들과는 달리 표의 형식에 구애받지 않고 여러 가지 형태의 표를 처리할 수 있으며, 다양한 정보의 인코딩으로 풍부해진 셀의 feature를 통해, 표의 row와 column 객체를 직관적이고도 효과적으로 추상화한다. 우리는 본 연구의 결과를 검증하기 위해 다채로운 어휘를 가지는 표 데이터에 대한 질의응답 쌍을 자체적으로 생성하였으며, 이에 대해 단일 모델 EM 스코어 96.0%에 이르는 결과를 얻었다. 이로써 우리는 추후 더 넓은 범위의 양식이 있는 데이터에 대해서도 자연어로 질의응답 할 수 있는 가능성을 확인하였다.

  • PDF

Factual consistency checker through a question-answer test based on the named entity (개체명 기반 질문-답변 검사를 통한 요약문 사실관계 확인)

  • Jung, Jeesu;Ryu, Hwijung;Chang, Dusung;Chung, Riwoo;Jung, Sangkeun
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.112-117
    • /
    • 2021
  • 기계 학습을 활용하여 요약문을 생성했을 경우, 해당 요약문의 정확도를 측정할 수 있는 도구는 필수적이다. 원문에 대한 요약문의 사실관계 일관성의 파악을 위해 개체명 유사도, 기계 독해를 이용한 질문-답변 생성을 활용한 방법이 시도되었으나, 충분한 데이터 확보가 필요하거나 정확도가 부족하였다. 본 논문은 딥러닝 모델을 기반한 개체명 인식기와 질문-답변쌍 정확도 측정기를 활용하여 생성, 필터링한 질문-답변 쌍에 대해 일치도를 점수화하는 방법을 제안하였다. 이러한 기계적 사실관계 확인 점수와 사람의 평가 점수의 분포를 비교하여 방법의 타당성을 입증하였다.

  • PDF

Answers Candidate Detection System using Dual Pointer Network Decoder (듀얼 포인터 네트워크 디코더를 이용한 정답 후보군 탐지 시스템)

  • Jang, Youngjin;Kim, Harksoo;Kim, Jintae;Wang, Jihyun;Lee, Chunghee
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.424-426
    • /
    • 2019
  • 정답 후보군 탐지 모델은 최근 활발히 진행되고 있는 질의-응답 데이터 수집 연구의 선행이 되는 연구로 특정 질문에 대한 정답을 주어진 단락에서 추출하는 작업을 말한다. 제안 모델은 포인터 네트워크 디코더를 통하여 기존의 순차 레이블링 모델에서 처리할 수 없었던 정답이 겹치는 문제에 대해서 해결할 수 있게 되었다. 그리고 독립된 두 개의 포인터 네트워크 디코더를 사용함으로써, 단일 포인터 네트워크로 처리할 수 없었던 정답의 탐지가 가능하게 되었다.

  • PDF

A Study of Fine Tuning Pre-Trained Korean BERT for Question Answering Performance Development (사전 학습된 한국어 BERT의 전이학습을 통한 한국어 기계독해 성능개선에 관한 연구)

  • Lee, Chi Hoon;Lee, Yeon Ji;Lee, Dong Hee
    • Journal of Information Technology Services
    • /
    • v.19 no.5
    • /
    • pp.83-91
    • /
    • 2020
  • Language Models such as BERT has been an important factor of deep learning-based natural language processing. Pre-training the transformer-based language models would be computationally expensive since they are consist of deep and broad architecture and layers using an attention mechanism and also require huge amount of data to train. Hence, it became mandatory to do fine-tuning large pre-trained language models which are trained by Google or some companies can afford the resources and cost. There are various techniques for fine tuning the language models and this paper examines three techniques, which are data augmentation, tuning the hyper paramters and partly re-constructing the neural networks. For data augmentation, we use no-answer augmentation and back-translation method. Also, some useful combinations of hyper parameters are observed by conducting a number of experiments. Finally, we have GRU, LSTM networks to boost our model performance with adding those networks to BERT pre-trained model. We do fine-tuning the pre-trained korean-based language model through the methods mentioned above and push the F1 score from baseline up to 89.66. Moreover, some failure attempts give us important lessons and tell us the further direction in a good way.

Machine Reading Comprehension-based Question and Answering System for Search and Analysis of Safety Standards (안전기준의 검색과 분석을 위한 기계독해 기반 질의응답 시스템)

  • Kim, Minho;Cho, Sanghyun;Park, Dugkeun;Kwon, Hyuk-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.351-360
    • /
    • 2020
  • If various unreasonable safety standards are preemptively and effectively readjusted, the risk of accidents can be reduced. In this paper, we proposed a machine reading comprehension-based safety standard Q&A system to secure supporting technology for effective search and analysis of safety standards for integrated and systematic management of safety standards. The proposed model finds documents related to safety standard questions in the various laws and regulations, and then divides these documents into provisions. Only those provisions that are likely to contain the answer to the question are selected, and then the BERT-based machine reading comprehension model is used to find answers to questions related to safety standards. When the proposed safety standard Q&A system is applied to KorQuAD dataset, the performance of EM 40.42% and F1 55.34% are shown.

I-QANet: Improved Machine Reading Comprehension using Graph Convolutional Networks (I-QANet: 그래프 컨볼루션 네트워크를 활용한 향상된 기계독해)

  • Kim, Jeong-Hoon;Kim, Jun-Yeong;Park, Jun;Park, Sung-Wook;Jung, Se-Hoon;Sim, Chun-Bo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1643-1652
    • /
    • 2022
  • Most of the existing machine reading research has used Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) algorithms as networks. Among them, RNN was slow in training, and Question Answering Network (QANet) was announced to improve training speed. QANet is a model composed of CNN and self-attention. CNN extracts semantic and syntactic information well from the local corpus, but there is a limit to extracting the corresponding information from the global corpus. Graph Convolutional Networks (GCN) extracts semantic and syntactic information relatively well from the global corpus. In this paper, to take advantage of this strength of GCN, we propose I-QANet, which changed the CNN of QANet to GCN. The proposed model performed 1.2 times faster than the baseline in the Stanford Question Answering Dataset (SQuAD) dataset and showed 0.2% higher performance in Exact Match (EM) and 0.7% higher in F1. Furthermore, in the Korean Question Answering Dataset (KorQuAD) dataset consisting only of Korean, the learning time was 1.1 times faster than the baseline, and the EM and F1 performance were also 0.9% and 0.7% higher, respectively.

BERT Sparse: Keyword-based Document Retrieval using BERT in Real time (BERT Sparse: BERT를 활용한 키워드 기반 실시간 문서 검색)

  • Kim, Youngmin;Lim, Seungyoung;Yu, Inguk;Park, Soyoon
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.3-8
    • /
    • 2020
  • 문서 검색은 오래 연구되어 온 자연어 처리의 중요한 분야 중 하나이다. 기존의 키워드 기반 검색 알고리즘 중 하나인 BM25는 성능에 명확한 한계가 있고, 딥러닝을 활용한 의미 기반 검색 알고리즘의 경우 문서가 압축되어 벡터로 변환되는 과정에서 정보의 손실이 생기는 문제가 있다. 이에 우리는 BERT Sparse라는 새로운 문서 검색 모델을 제안한다. BERT Sparse는 쿼리에 포함된 키워드를 활용하여 문서를 매칭하지만, 문서를 인코딩할 때는 BERT를 활용하여 쿼리의 문맥과 의미까지 반영할 수 있도록 고안하여, 기존 키워드 기반 검색 알고리즘의 한계를 극복하고자 하였다. BERT Sparse의 검색 속도는 BM25와 같은 키워드 기반 모델과 유사하여 실시간 서비스가 가능한 수준이며, 성능은 Recall@5 기준 93.87%로, BM25 알고리즘 검색 성능 대비 19% 뛰어나다. 최종적으로 BERT Sparse를 MRC 모델과 결합하여 open domain QA환경에서도 F1 score 81.87%를 얻었다.

  • PDF

Verification of Abductive Rules with Factotum SemNet (Factotum SemNet을 활용한 개연규칙 검증)

  • Yang, Jae-Gun;Bae, Jae-Hak;Yoo, Hae-Young;Lee, Jong-Hyeok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.349-352
    • /
    • 2003
  • 독해 과정에서 문장간 개연성 파악은 저자의 저술의도 파악에 필수적인 요소로 작용한다. 이런 중요성은 온라인 운서의 처리에도 적용된다. 이 점은 기계를 이용한 자연어 처리과정에서 문서의 개연규칙 추출이 중요함을 의미한다. 본 논문에서는 개연규칙 추출 자동화의 전단계로서 미리 준비한 개연 규칙을 검증해 보았다. 검증과정에서는 Factotum SemNet 을 활용하였다. 검증과정을 통해, 준비된 개연규칙이 글 이해에 필요한 개연성을 잘 반영하고 있음을 확인하였고, 개연규칙 검증에 Factotum SemNet이 유용함을 보였다.

  • PDF