• Title/Summary/Keyword: 급속가열

Search Result 148, Processing Time 0.023 seconds

A Study on Rapid Mold Heating System using High-Frequency Induction Heating (고주파 유도가열을 사용한 급속 금형가열에 관한 연구)

  • Jeong, Hui-Tack;Yun, Jae-Ho;Park, Keun;Kwon, Oh-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.594-600
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat a conductive workpiece by means of high-frequency electric current caused by electromagnetic induction. Because the induction heating is a convenient and efficient way of indirect heating, it has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation on the rapid heating using the induction heating and rapid cooling using a vortex tube in order to eliminate an excessive cycle time increase. Experiments are performed in the case of a steel cup mold core with various heating and cooling conditions. Temperature is measured during heating and cooling time, from which appropriate mold heating and cooling conditions can be obtained.

Microwave Sintering of LTCC LC Filter (LTCC LC Filter의 Microwave 소결)

  • 안주환;선용빈;김석범
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.121-125
    • /
    • 2002
  • 이동통신기기 등의 고주파용 LTCC(Low Temperature Co-fired Ceramic) LC filter의 소결결에 있어 기존의 소결공정인 전기로 소결공정과 microwave를 이용한 소결공정을 이용하여 소결하였을때 LC filter의 수축율과 무게감소, 그에 따른 밀도의 변화, SEM을 이용한 표면형상 분석을 통해 급속가열을 통한 공정시간의 단축, 낮은 에너지 소비로 인한 제조단가의 절감, 균일한 가열로 인한 소결온도의 저하 등의 장점을 갖는 microwave sintering을 적용할 수 있는 가능성을 제시하였다.

  • PDF

A Study on the Generation and Transmission of a Pressure Wave Induced by Rapid Heating of Compressible Fluid (압축성 유체의 급속 가열에 기인한 압력파의 생성 및 전달특성에 관한 연구)

  • 황인주;김윤제
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 2003
  • Thermo-acoustic waves can be generated in a compressible fluid by rapid heating and cooling near the boundary walls. These phenomena are very important mechanism of heat transfer in the space environment in which natural convection does not exist. In this study, the generation and transmission characteristics of thermo-acoustic waves in an air filled enclosure with rapid wall heating are studied numerically. The governing equations were discretized using control volume method, and were solved using PISO algorithm and second-order upwind scheme. For the stable solution time step were considered as t=1$\times$$10^{-9}$ order, and grids are 50$\times$800. The induced thermo-acoustic wave propagates through the fluid until it decays due to viscous and heat dissipation. The wave showed sharp front shape and decreased with long tail.

Spalling Properties of Ring-Type Restrained Concrete by Heating Conditions (가열조건에 따른 링형 구속 콘크리트의 폭렬특성)

  • Hwang, Eui-Chul;Kim, Guy-Yong;Lee, Sang-Kyu;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.155-156
    • /
    • 2018
  • In this study, surface spalling and explosive spalling of ring-type ultra-high strength concrete under rapid heating and slow heating were investigated. In rapid heating, the internal temperature difference of the concrete is large, so that continuous surface spalling occurs. However, in slow heating, the difference in the internal temperature of the concrete is small, resulting in explosive spalling at a time. Since the heating condition has a great influence on the internal temperature of the concrete, it is necessary to consider the spalling of the concrete under various heating conditions.

  • PDF

Thermomechanical Characteristics for Structural Material of Supersonic Vehicle (초음속 비행체 구조재료에 대한 열기계적 특성)

  • Kim, Jong-Hwan;Lee, Kee-Bhum;Lee, Kuong-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.2 s.21
    • /
    • pp.77-87
    • /
    • 2005
  • The thermomechanical characteristics were evaluated for 17-4PH stainless steel widely used in supersonic airframe subjected to both aerodynamic loading and heating. The thermomechanical tests were conducted under both elevated temperature and rapid heating condition from $1^{\circ}C/sec\;to\;28^{\circ}C/sec$. The thermomechanical behaviors under rapid heating were compared with those of elevated temperature after 1/2 hour exposure in terms of yield stress to investigate the influence of heating rates. A heating rate-yield temperature parameter was suggested for rapid heating based on time-temperature parameters, and master yield stress curve was obtained by using these parameters. The experimental results and methodology from this study can be used as basic engineering data when designing supersonic vehicle structures subjected to aerodynamic loading and severe heating environment.

Integrated Numerical Analysis of Induction-Heating-Aided Injection Molding Under Interactive Temperature Boundary Conditions (열-유동 상호작용을 고려한 유도가열 적용 미세 사출성형의 통합적 수치해석)

  • Eom, Hye-Ju;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.575-582
    • /
    • 2010
  • In recent years, several rapid-mold-heating techniques that can be used for the injection molding of thin-walled parts or micro/nano structures have been developed. High-frequency induction heating, which involves heating by electromagnetic induction, is an efficient method for the rapid heating of mold surfaces. The present study proposes an integrated numerical model of the high-frequency induction heating process and the resulting injection molding process. To take into account the effects of thermal boundary conditions in induction heating, we carry out a fully integrated numerical analysis that combines electromagnetic field calculation, heat transfer analysis, and injection molding simulation. The proposed integrated simulation is extended to the injection molding of a thin-wall part, and the simulation results are compared with the experimental findings. The validity of the proposed simulation is discussed according to the ways of the boundary condition imposition.

Fabrication of WC-8wt.%Co Hard Materials by Rapid Sintering Processes and Their Mechanical Properties (급속소결공정에 의한 WC-8wt.%Co 초경재료 제조와 기계적 성질평가)

  • Jeong In-Gyun;Kim Hwan-Cheol;Son In-Jin;Do Jeong-Man
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.04a
    • /
    • pp.79-80
    • /
    • 2006
  • 새로운 급속소결방법인 고주파유도가열 소결법과 펄스전류활성 소결법을 이용하여 습식 볼밀링으로 혼합한 WC-8wt.%Co분말에 60MPa의 압력과 90%의 고주파출력 또는 2800A의 필스전류를 가하여 상대밀도가 98.6% 이상인 초경재료를 2분이내의 짧은 시간에 제조하였다. 초기의 WC분말의 입도가 미세해짐에 따라 고주파유도가열 소결법과 펄스전류활성 소결법 모두 소결시간이 단축되는 경향을 보였으며 그 소결체의 결정립 크기도 감소하였다. 고주파유도가열 소결법으로 제조된 초경합금의 WC 결정립 크기는 초기입도가 증가함에 따라 가각 410, 540, 600, 700 및 850nm으로 측정되었으며. 그 결과를 Fig. 1.에 나타내었다. WC의 초기입도가 $0.5{\mu}m$일 경우 고주파유도가열 소결법과 펄스전류활성 소결법으로 제조된 WC-8wt.%Co 소결체의 경도와 파괴인성은 각각 $1923kg/mm^2$$10.5MPa{\cdot}m^{1/2}$$1947kg/mm^2$$10.8MPa{\cdot}m^{1/2}$ 이었다.

  • PDF