• 제목/요약/키워드: 급냉응고

검색결과 69건 처리시간 0.022초

정 20면체 쌍정의 전자회절 (Electron Diffraction of Icosahedral Twin)

  • 김호성;정수진
    • 한국결정학회지
    • /
    • 제1권2호
    • /
    • pp.91-98
    • /
    • 1990
  • 급냉 응고한 알루미늄-전이금속 합금으로부터 얻은 정 20면체상에 대한 쌍정 모델을 제시하였다. 이러한 쌍정모델을 이응하여 다중회절을 고려 한 전자 회절도를 계산하였다. 5회 대칭을 갖는 계산된 회절도는 실험에서 얻은 회절도와 잘 일치하였다. 따라서 본 연구에서 제시한 쌍정모델은 정 20면체상과 밀접한 연관이 있으리라 판단된다.

  • PDF

메조스코픽 구조를 가지는 급냉응고 Al-Nd-(Cu,Ag)합금의 기계적 성질 (Mechanical Properties in Rapidly Solidified Al-Nd-(Cu,Ag) Alloys with Mesoscopic Structure)

  • 고근우;김영환;김한군
    • 열처리공학회지
    • /
    • 제12권4호
    • /
    • pp.320-326
    • /
    • 1999
  • In rapidly solidified $Al_{92-x}Nd_8$(Cu,Ag)x ($0{\leq}X{\leq}10at%$) alloys, amorphous single phases were obtained in the ranges of $Oat%{\leq}X{\leq}4at%$ for Al-Nd-Cu system and $Oat%{\leq}X{\leq}6at%$ for Al-Nd-Ag system, respectively. Mesoscopic structures consisted of amorphous and crystalline phases were formed above solute ranges. It was founded that the mesoscopic structures were also formed near 1st exothermic peak on DSC curve by aging in amorphous single phase alloys. For example, amorphous $Al_{92-x}Nd_8$(Cu,Ag)x (X=2.4at%) alloys containing nanoscale Al particles and compounds, i.e., mesoscopic structure, exhibited higher tensile fracture strength(${\sigma}_f$) than those of amorphous single phase alloys with the same composition. The ${\sigma}_f$ showed a maximum value in the $V_f$ ranges of 10~15%. The reason is presumed that the nanoscale precipitates which have higher mechanical strength compared with the amorphous phase with the same composition act as an effective resistance to shear deformation of the amorphous matrix.

  • PDF

급냉응고된 Al-(Fe, Ce) 합금에서 형성되는 석출상의 X-선적연구 (A Study on the Precipitates in Rapidly Solidified Al-(Fe, Ce) Alloys by Analysis of X-Ray Diffraction)

  • 박익민;이규한;최정철;조형호
    • 한국주조공학회지
    • /
    • 제8권4호
    • /
    • pp.446-452
    • /
    • 1988
  • To obtain detailed information on the metastable and the equilibrium phases in rapidly solidified Al-(Fe,Ce) alloys, analysis of X-ray diffraction pattern has been carried out. It has been found that the metastable phase formed in Al-Fe alloys including up to 6wt%Fe is $Al_6Fe$ and the equilibrium phase is $Al_3Fe$. Any X-ray diffraction peak corresponding to the equilibrium phase $Al_{13}Fe_4$ has not been observed during aging. In Al-4wt%Fe alloy, which is ribbon shape with thickness less than $70\;{\mu}m$, aged at $400^{\circ}C$ for 1h after rapid solidification, unidentified phase has been found. In Al-4wt%Ce alloy, only X-ray diffraction peak corresponding to the equilibrium phase, $Al_4Ce$ has been observed. It has been found that the metastable phase Formed in Al-Fe-Ce alloys including up to 6wt% Fe and 4wt% Ce is $Al_6Fe$ and the equilibrium phases are $Al_3Fe$ and $Al_{10}CeFe_2$.

  • PDF

급냉응고와 원소첨가에 의한 Mg-Zn합금의 미세조직 제어 (Microstructural Control of Mg-Zn Alloys by Rapid Solidification and Elemental Addition)

  • 김연욱;허보영
    • 한국주조공학회지
    • /
    • 제18권3호
    • /
    • pp.283-288
    • /
    • 1998
  • Interest in rapid solidification of magnesium alloys stems from the fact that conventional ingot metallurgy alloys exhibit poor strength, ductility, and corrosion resistance. Such properties can be improved by microstructural refinement via rapid solidification processing. In this study, Mg-Zn alloys have been produced as continuous strips by melt overflow technique. In order to evaluate the influence of additional elements on the grain refinement and mechanical properties, Th and Zr were added in rapidly solidified Mg-5wt%Zn alloy. Then the microstructual observations were undertaken with the objective of evaluating the grain refinement as function of the cooling rate and the additional elements. The tremendous increase in hardness of Mg-Zn base alloys was mainly due to the refinement of the grain structure by the effect of rapid solidification and alloying elements. The formation of intermetallic phases on the grain boundaries may have a positive effect on the corroion resistance. Therefore, despite competition from many other developments, the rapid solidification processing of magnesium alloys emerges as a valuable method to develop superior and commercially acceptable magnesium alloys.

  • PDF

통전가압법으로 제조한 이방성 NdFeB 영구자석의 자기특성에 미치는 첨가제의 영향 (Effect of Blending Aids the Magnetic Properties of Anisotropic NdFeB Magnet Prepared by CAPA Process)

  • 김형태;조성호;김윤배;김학신
    • 한국자기학회지
    • /
    • 제12권3호
    • /
    • pp.88-93
    • /
    • 2002
  • 소량의 Zn및 Sn분말을 급냉응고된 NdFeB 자성합금 분말에 첨가한 후 CA-press공정에 의해 등방성 자석을 제조하고, 제조된 등방성 자석을 CA-deformation 공정에 의해 소성변형시켜 이방성 자석을 제조하였다. 원료분말만을 밀링하여 사용한 경우, 밀링시간에 관계없이 잔류자화값은 일정하였으며, 보자력은 초기원료 분말을 그대로 사용하는 경우에 비하여 감소하였다. 이에 반해 소량의 Zn및 Sn분말을 첨가하고 볼밀링에 의하여 혼합한 분말로부터 제조된 등방성 자석 및 이방성 자석의 보자력은 첨가원소가 없는 경우의 시편보다 증가하였으며, 0.3wt.% Zn및 Sn이 첨가된 이방성 자석에서는 보자력이 5kOe 정도 증가하였다.

Ni 기 초합금 급냉응고 리본의 미세구조와 고온 인장특성에 관한 연구 (A Study on the Microstructures and High Temperature Tensile Properties of Ni-base Superalloy Melt-Spun Ribbons)

  • 한창석
    • 열처리공학회지
    • /
    • 제27권4호
    • /
    • pp.180-184
    • /
    • 2014
  • In order to make clear relationship between high temperature tensile properties and fine microstructure of rapidly solidified cast-type Ni-base superalloys without heat treatment required for consolidation process, tensile test was carried out by changing strain rate from $5{\times}10^{-5}s^{-1}$ to $2{\times}10^{-2}s^{-1}$ and test temperature from $900^{\circ}C$ to $1050^{\circ}C$ using IN738LC and Rene'80 melt-spinning ribbons by twin roll process which were superior to ribbons by single roll process from the viewpoint of structure homogeneity. The dependence of tensile strength on strain rate and test temperature was studied and strain rate sensitivity, m, were estimated from tensile test results. From this study, it was found that tensile strength was influenced by ${\gamma}^{\prime}$ particle diameter, test temperature and strain rate, and m of ribbons exhibited above 0.3 over $950^{\circ}C$.

Planar Flow Casting의 퍼들 형성에 관한 수치해석 (A Numerical Study of the Melt Puddle Formation in the Flow Casting,)

  • 김영민;임익태;김우승
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1365-1372
    • /
    • 2001
  • In the planar flow casting(PFC) process, the conditions of the melt puddle between nozzle and rotating wheel affect significantly the quality and dimensional uniformity of the downstream ribbon. For stable puddle formation, the nozzle is placed very close to the quenching wheel, so the surface-tension and wall-adhesion forces have an important effect upon the fluid flow.\`In this study the planar flow casting process has been mode]ed using the VOF method for free surface tracking. The transient puddle formation from the present analysis shows good agreements with the previous experimental results. Furthermore, the variation of melt temperature and the corresponding cooling rate of the melt have been examined. The present results also show how the melt puddle can be farmed on the rotating substrate, how the melt flows within the puddle, and how the changes of the process variables affect the puddle formation and its corresponding fluid flow and heat transfer behavior.

급냉응고에 의한 Mg-5wt%Zn 합금의 결정립 미세화 (Grain Refinement of Mg-5wt%Zn Alloy by Rapid Solidification Process)

  • 김연욱;이은종;허보영
    • 한국주조공학회지
    • /
    • 제17권3호
    • /
    • pp.302-308
    • /
    • 1997
  • In spite of the fact that magnesium has low density and good machinability, its applications are restricted as a structural engineering material because of the poor strength, ductility, and corrosion resistance of the conventional ingot metallurgy alloys. Such properties can be improved by microstructural refinement via rapid solidification processing. In this study, Mg-5wt%Zn alloys have been produced as continuous strips by the melt overflow technique. In order to evaluate the influence of the cooling rate on the grain refinement and mechanical properties, seven different thickness strips were produced by means of controlling the speed of the cooling wheel. Then the microstructual observations were undertaken with the objective of evaluating the grain refinement as function of the cooling rate. The tremendous increase in hardness of Mg-Zn alloy was mainly due to the refinement of the grain structure by the effect of rapid solidification. The formation of intermetallic phases on the grain boundaries may have a positive effect on the corroion resistance. Therefore, despite competition from many other developments, the rapid solidification process emerges as a valuable method to develop superior and commercially acceptable magnesium alloys.

  • PDF

급냉응고된 $Ti_{50}Ni_{20}Cu_{30}$ 합금 스트립의 형상기억특성과 기계적특성 (Shape Memory Characteristics and Mechanical Properties of Rapidly Solidified $Ti_{50}Ni_{20}Cu_{30}$ Alloy Strips)

  • 김연욱
    • 한국주조공학회지
    • /
    • 제29권5호
    • /
    • pp.187-191
    • /
    • 2009
  • Microstructures and shape memory characteristics of $Ti_{50}Ni_{20}Cu_{30}$ alloy strips fabricated by arc melt overflow have been investigated by means of XRD, optical microscopy and DSC. The microstructure of as-cast strips exhibited columnar grains normal to the strip surface. X-ray diffraction analysis showed that one-step martensitic transformation of B2-B19 occurred in the alloy strips. According to the DSC analysis, it was known that the martensitic transformation temperature ($M_s$) of B2 $\rightarrow$ B19 in $Ti_{50}Ni_{20}Cu_{30}$ strip is $57^{\circ}C$. During thermal cyclic deformation with the applied stress of 60 MPa, transformation hysteresis and elongation associated with the B2-B19 transformation were observed to be $3.7^{\circ}C$ and 1.6%, respectively. The as-cast strip of $Ti_{50}Ni_{20}Cu_{30}$ alloy also showed a superelasticity and its stress hysteresis was as small as 14 MPa. These mechanical properties and shape memory characteristics of the alloy strips were ascribed to B2-B19 transformation and the controlled microstructures produced by rapid solidification of the arc melt overflow process.

Single Roller법에 의한 Al-Cr 계 합금의 급냉응고 조직과 상분해 (Rapidly Solidified Microstructure and Phase Decomposition of Al-Cr alloys by the Single Roller Method)

  • 조순형;윤의박
    • 한국주조공학회지
    • /
    • 제7권2호
    • /
    • pp.108-113
    • /
    • 1987
  • Al-Cr alloy with composition in the range from 1.5 wt% to 10 wt% Cr were rapidly solidified from the melt by the single roller method. The supersaturated solid solution was obtained up to 6 wt% Cr in Al-Cr alloy for $20{\mu}m$ thickness. Lattice parameter decreased with increasing Cr content at the rate of 0.00456A per wt% Cr up to 6 wt% Cr. Microhardness increased with increasing Cr content at the rate of $10\;Kg/mm^2$ per wt% Cr up to 6 wt% Cr. Microhardness measurements on the Al-6 wt% Cr supersaturated solid solution annealed isothermally showed no sign of age hardening. Decomposition temperature, determined by lattice parameter changes and microhardness changes, was $470^{\circ}C$ for Al-6 wt% Cr supersaturated solid solution. Transmission electron microscopy showed that decomposition within one hour below $400^{\circ}C$ occurred at grain boundaries only, and also the additional decomposition within grains being evident at $450^{\circ}C$ The coarse precipitate structure showed at $500^{\circ}C$ and $550^{\circ}C$, respectively. The coarse precipitate structure is considered $Al_7Cr$.

  • PDF