• Title/Summary/Keyword: 금형분할

Search Result 29, Processing Time 0.032 seconds

Development of Tool Item Selection System Aiding CAM Procedure for Injection Mold (사출금형 CAM 작업 지원용 공구 항목 추천 시스템 개발)

  • 김성근;양학진;허영무;양진석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.118-125
    • /
    • 2003
  • As consumer's desire becomes various, agility of mold manufacturing is the most important factor for competitive mold manufacturer. Decision making process is required to produce optimal result of CAM systems in using commercial CAM system to generate tool path. The paper proposes a methodology fur computer-assisted tool selection procedures for various cutting type of rough, semi-rough and finish cuts. The procedure provides assistance for machining tool selection by analyzing sliced CAD model section of die cavity and core. Information about machining time for the generated NC-code is used to aid the tool selection. The module is developed with commercial CAM API. This module will be used fur the optimization of tool selection and planning process.

A Study on the Design of Cold Forging Die with Parted Notch (분할된 노치형상을 고려한 냉간단조 금형 설계에 관한 연구)

  • Lee, H.Y.;Yeo, H.T.;Hur, K.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.452-456
    • /
    • 2007
  • Cold forging technology of a gear product is being interested in the dimensional accuracy, high stiffness and reduction of stress concentration. Especially it is needed to avoid the damage due to extremely high local pressure. Therefore it is important to reduce the high pressure in die design of cold forging. In this study, single die insert type and splitted die insert type are considered to recognize the notch effects in the die of sprocket forming. The stress concentration has been released at the notch area by the cushion effect in the splitted die insert.

Development of Tool Selection System Aiding CAM Works for Injection Mold (사출금형 CAM 작업 지원용 공구 선정 시스템 개발)

  • 양학진;김성근;허영무;양진석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.175-179
    • /
    • 1997
  • As consumer's desire becomes various, agility of mold manufacturing is most important factor for competence of manufacturer. In common works to use commercial CAM system to generate tool path, some decision making process is required to produce optimal result of CAM systems. We propose tool selection procedures to aid the decision making process. The system provides available tool size for machining of design model part of injection mold die by analyzing sliced CAD model of die cavity and core. Also, the tool size information is used to calculate machining time. The system is developed with commercial CAM using API. This module will be used for optimization of tool selection and planning process.

  • PDF

Passage Feature Recognition Algorithm for Automatic Parting Surface Generation in Plastic Injection Mold (플라스틱 사출 금형의 분할면 자동 생성을 위한 관통 특징 형상 추출 알고리즘의 개발)

  • 정강훈;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.196-205
    • /
    • 2000
  • This paper proposes a topology-based algorithm for recognizing the passage features using a concept of multi-face hole loop. The Multi-face hole loop is a concetpual hole loop that is formed over several connected faces. A passage feature is recognized in the proposed approach by two multi-face hole loops that constitute its enterance and exit. The algorithm proposed in this paper checks the connectivity of the two multi-face hole loops to recognize passage features. The total number of passage features in a part is calculated from Euler equation and is compared with the number of found passage features to decide when to terminate. To find all multi-face hole loops in a part, this paper proposes an algorithm for finding all combinations of connected faces. The edge convexity is used to judge the validity of multi-face hole loops. By using the algorithm proposed in this paper, the passage features could be recognized effectively. The approach proposed in this paper is illustrated with several example parts.

  • PDF

Finite element simulation of sheet metal forming by using non-parametric tool description with locally refined patches (국소 분할된 패치를 갖는 비매개변수 금형묘사법을 이용한 3차원 박판성형공정해석)

  • 윤정환;양동열;유동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.162-169
    • /
    • 1995
  • An improved nonparametric tool description based on successive refined monparametric patches is proposed and therlated criterion for refinement is also discussed . In the proposed sheme, any required order of tool surface conformity can be achieved by employing successive refinements accoring to the suggested criterion. By using the suggested adaptive tool refinement technique based on the nonparametric patch tool description, the locally refined nonparametric tool surface with economic memory size and sufficient accuracy as well as with favorable charateristics for contact treatment can be obtained directly form the parametric patch related with commerical CAD system. Computation is carried out for a chosen complex sheet forming example of an actual autobody panel in order to verify the validity and the efficiency of the developed tool surface description.

  • PDF

Application of Partial-size Die forming Process to Semiellpisoidal Segment Head of the Pressure Vessel (압력 용기 반타원형 분할 경판의 제작에 있어서 부분 금형 성형 공정의 적용)

  • Kwon I. K.;Youn J. G.;Lee W. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.97-100
    • /
    • 2005
  • The purpose of this study is to apply the partial-size die forming process to actual segment head farming process of semi-ellipsoidal heads and to verify the availability of the suggested forming method. The initial curvature for the preliminary forming process was determined through anticlastic behavior of plate bending and the partial-size die for final forming was designed based on the results of springback analysis using F.EA. From the results of actual forming, it was concluded that die design was appropriate and proposed forming process would be successfully applied to actual forming jobs.

  • PDF

A Study on the Helical Gear Forming by Cold Extrusion (냉간 압출에 의한 헬리컬 기어의 제조에 관한 연구)

  • 최재찬;조해용;권혁홍;한진철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.127-138
    • /
    • 1991
  • A gear forming method by cold extrusion and an analytical method with its numerical solution program based on the upper bound method were developed. In the analysis the involute curve was as a shape of die and the upper bound method was used to calculate energy dissipation rate. By this method the power requirement and optimum conditions necessary for extruding helical(spur) gear were successfully calculated. These numerical solutions are in good agreement with experimental data. In the experiment, 4-6 class helical gear of KS standard for automobile transmission was successfully manufactured.

Tool Design and Numerical Verification for Thick Plate Forming of Hollow-Partitioned Steam Turbine Nozzle Stator (스팀 터빈용 중공 분할형 노즐 정익의 후판 성형을 위한 금형 설계 및 해석적 검증)

  • Kang, B.K.;Kwak, B.S.;Yoon, M.J.;Jeon, J.Y.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.379-389
    • /
    • 2016
  • As a stator for steam turbine diaphragm, hollow-type nozzle stator to substitute for conventional solid one is introduced in this study. This hollowed stator can be separated into two parts such as upper and lower plates with large and curved surface area. This study focuses on thick plate forming process for the upper plate of the hollow-partitioned nozzle stator. First, to reduce forming defects such as under-cut and localized thinning of the deformed plate, and to avoid tool interruption between forming punch and lower die, tool design including the position determination of forming surfaces is performed. Uni-axial tensile tests are carried out using SUS409L steel plate with initial thickness of 5.00mm, and plastic strain ratio (r-value) is also obtained. Due to the asymmetric curved configuration of the upper plate, it is hard to adopt a series of blank holder or draw-bead, so the initial plate during this thick plate forming experiences unstable and non-uniform contact. To easy this forming difficulty and find suitable tool geometry without sliding behavior of the workpiece in the die cavity, two geometric parameters with respect to each shoulder angle of the lower die and the upper punch are adopted. FE models with consideration of 21 combinations for the geometric parameters are built-up, and numerical simulations are performed. From the simulated and predicted results, it is shown that the geometric parameter combinations with ($30^{\circ}$, $90^{\circ}$) and ($45^{\circ}$, $90^{\circ}$) for the shoulder angle of the lower die and the upper punch are suitably applied to this upper plate forming of the hollow-partitioned nozzle stator used for the turbine diaphragm.

Mechanical Bending Process and Application for a Large Curved Shell Plate by Multiple Point Press Machine (무금형 다점 펀치를 사용한 선체외판의 분할 성형 가공 정보 계산 시스템 개발)

  • Hwang, Se-Yun;Lee, Jang-Hyun;Ryu, Cheol-Ho;Han, Myung-Soo;Kim, Kwang-Ho;Kim, Kwang-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.528-538
    • /
    • 2011
  • As a forming method for curved hull plates more efficient than the flame bending, mechanical bending using multi point press forming and die-less forming is discussed in this paper. the mechanical forming is a flexible manufacturing system for automatically forming of hull parts. It is especially suited to varied curved parts. This paper discusses a multiple point pressing machine composed of a pair of reconfigurable punches in order to achieve the rapid forming of curved hull plates using division forming and presents how forming information is obtained from the given design surface. Although the mechanical forming can be efficient in the metal forming, spring back after pressing is a phenomenon which must be carefully considered when quantifying the process variables. If the spring back is not accurately controlled, the fabricated shell plate cannot meet assembly tolerance. This paper describes the principles to calculate the proper stroke of each punch at the divided areas. the strokes are determined by an iterative process of sequential pressing and spring back compensation from an unfolded flat shape to its given design surface. FEA(finite element analysis) is used to simulate the spring back of the plate and the IDA(iterative displacement adjustment) method adjusts the offset of pressing punches from the deformation results and the design surface. The shape deviations of two surfaces due to spring back are compensated by integrated system using FEA and IDA method. For the practical application, It is aimed to develop an integrated system that can automatically perform the compensation process and calculate strokes of punches of the double sides' reconfigurable multiple-press machine and some experimental results obtained with mechanical bending are presented.