• Title/Summary/Keyword: 금형강도해석

Search Result 45, Processing Time 0.021 seconds

Design and Implementation of the Front part of an Agricultural Electric Vehicle based on Vacuum Forming using Computational Structural Analysis

  • Lee, Hun-Kee;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.45-51
    • /
    • 2021
  • In this paper, we propose a 3D design method of the vacuum forming method of the front part to improve the lightness and production efficiency of agricultural electric vehicles. For agricultural electric vehicles, lightness and production efficiency are more important than the strength of materials for collision protection. In this paper, we propose a vacuum forming design method that can replace complex machining processes such as laser machining, bending, and painting. The main purpose of this research is to improve product stability, productivity and convenience through 3D design of the front part and development of vacuum forming mold technology. Research procedure follows the 3D modeling of the front part using CATIA, finite element analysis for the structural stability using ABAQUS, manufacturing prototype for the investigation of the dimensions using 3D scanner and actual driving test under agricultural electric vehicle usage environment. The results verifies the proposed 3D design method of the vacuum forming method and are expected to be widely used by agricultural workers through the simplification of the production process of agricultural electric vehicles.

The Effect of Porthole Shape on Elastic Deformation of Die and Process at Condenser Tube Extrusion (포트홀 형상이 컨덴서 튜브 직접 압출 공정 및 금형 탄성 변형에 미치는 영향)

  • Lee, J.M.;Kim, B.M.;Jo, H.;Jo, H.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.315-318
    • /
    • 2003
  • Recently, condenser tube which is used for a cooling system of automobiles is mainly manufactured by the conform extrusion but this method is inferior as compared with direct extrusion in productivity per the unit time and in the equipment investment. Therefore, it is essential for the conversion of direct extrusion with porthole die. The direct extrusion with porthole die can produce condenser tube which has the competitive power in costs and qualities compared with the existing conform extrusion. This study is designed to evaluate metal flow, welding pressure, extrusion load tendency of mandrel deflection that is affected by variation of porthole shape in porthole die. Estimation is carried out using finite element method under the non-steady state. Also this study was examined into the cause of mandrel fracture through investigating elastic deformation of mandrel during the extrusion.

  • PDF

Study on Heterojunction Injection Pulley Fabrication for Development of a High-Strength and Light-Weight Industrial Pulley (고강도 경량화 산업용 풀리 개발을 위한 이종접합 사출풀리 제작에 관한 연구)

  • You, Kwan-jong;Bae, Sung-ryong;Kim, Jae-yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.76-81
    • /
    • 2019
  • In the mold-manufacturing field, various methods of advanced production technology are being used in the production of industrial-grade gear pulleys. Among the current methods are injection molding, hoop molding, insight molding, two-material molding, compound-mold molding, as well as engineering plastic mold. Currently, casting pulleys are inexpensive because they are produced in small quantities. However, they produce complications during the manufacturing process, are very unreasonable for mass production, and are disadvantageous in cost competitiveness. Pulleys are divided into hundreds of kinds and thousands of kinds, so the production methods vary. As these pulleys are made of a single material by a casting and welding method, they are not manufactured using injection molds consisting of different materials. In this research, pulleys, shafts, and reinforced plastic materials were incorporated using ANSYS software, and a low-cost, lightweight technology was applied for trial production with optimum design and extrusion technology.

Joining High-Strength Steel and Al6061 Sheet Using Hole Clinching Process (Hole 클린칭을 이용한 고장력강판과 Al6061 이종소재의 접합)

  • Ahn, Nam-Sik;Lee, Chan-Joo;Lee, Jung-Min;Ko, Dae-Cheol;Lee, Seon-Bong;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.691-698
    • /
    • 2012
  • The joining of aluminum and HSS (high-strength steel) by the conventional clinching process is limited by the low formability of HSS. Defects in the clinching joint, such as necking of the upper sheet, cracks, and lack of interlocking, are produced by the different ductility properties of HSS and aluminum. In this study, we propose the hole clinching process for joining Al6061 and SPFC440, in which deformation of SPFC440 is avoided by drilling a hole in the SPFC440. The dimensions of the interlocking in the hole-clinched joint necessary to provide the required joint strength were determined. Based on the volume constant of the hole clinching process, the shapes of the tools were designed by finite element (FE)-analysis. A hole clinching experiment was performed to verify the proposed process. A cross-section of the joint showed good agreement with the results of the FE-analysis. The lap shear strength was found to be 2.56 kN, which is higher than required joint strength.

Analysis of Springback and Die Material Suitability in the UHSS Sheet Forming Process (초고강도 강판 성형 시의 스프링백 해석 및 금형 소재 적합성 검토)

  • Oh, I.S.;Yun, D.Y.;Cho, J.H.;Lee, M.G.;Kim, H.Y.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.203-210
    • /
    • 2020
  • In this study, formability and springback behavior of 1.5 GPa grade ultra-high strength steel (UHSS) sheet were predicted through the finite element simulation, and structural stability of the forming dies was verified by the coupled forming-structural analysis. Uniaxial tension and uniaxial tension-compression tests were performed to obtain experimental data for modeling the springback properties of the sheet material. The springback values predicted by simulation were compared with those from actual measurements. The results calculated from the kinematic hardening model were found to be much more accurate than those from the isotropic hardening model. Deformation of the forming die and springback of the product were calculated by the coupled forming-structural analysis. The higher the strength of the die material, the smaller the surface displacement of the die and the springback of the product. The internal stresses of the dies made of three materials, FC300, FCD550 and STD11 were compared with the yield stress of each material. The results provided a basis for determining the most suitable material for each part of the die set. As a result, simulation techniques have been established for predicting formability and springback in the UHSS sheet forming process.