• Title/Summary/Keyword: 금형강도해석

Search Result 45, Processing Time 0.024 seconds

Process Analysis and Die Design for Al3003 Condenser Tube Extrusion with 12 Cell (Al3003 12셀 컨덴서 튜브의 압출을 위한 공정해석 및 금형설계)

  • Lee, Sang-Ho;Lee, Jung-Min;Jo, Hyung-Ho;Jo, Hoon;Kim, Mun-Bae;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.44-51
    • /
    • 2007
  • Condenser tubes are mainly produced by precision extrusion with a porthole die and are used in the flow pass of refrigerant cooling systems in automobiles. The recent technical trend of condenser tube requires the tube to be of more multi cellizing, high strength and small size, and to increase the heat transfer area and heat efficiency. Hence, this paper is shown that the results of FE-simulation are in good agreement with the experimental ones. Finally, the extrusion die shape is proposed through analysis of FE-simulation and performance of trial extrusion. Chamber shape dimension and initial temperatures of die is adjusted analysis results. And the possibility of extrusion is estimated that forming load, welding pressure and stress analysis of die in this paper. The validity of simulated results was verified into extrusion experiments on the condenser tubes.

A Convergence Study by Structural Analysis on Torsion Beam Suspension of Rear Wheel (후륜 토션빔 서스펜션에 대한 구조해석에 의한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.187-192
    • /
    • 2019
  • In this study, the structural and fatigue analyses were carried out according to the configuration of rear wheel suspension of torsion beam. Three types of models similar to the actual torsional beam suspension are analyzed and we will find out which one is best on strength. The models of torsion beam suspension were designed in three types of models A, B and C through CATIA program and the results of structural and fatigue analyses were obtained by using the ANSYS program. We will confirm which model is better structurally than other models. According to the analysis results, the deformation happens to be the largest in the middle, and model B has the least deformation compared to model A and C. Similarly, model B is shown to have the smallest result at equivalent stress. So, model B is judged to be the best in terms of its strength, and it is thought to be the most efficient to converge into art design at the suspension design with a torsion beam of rear wheel.

A Study on Manufacturing of the Long Fiber-reinforced Thermoplastic (LFT) Automotive Under Cover Using the In-line Compounding (ILC) Technology (인라인 컴파운딩 기술을 이용한 장섬유강화 플라스틱 자동차 언더커버의 제조에 관한 연구)

  • Lee, Kyu-Se;Lee, Kyung-Sick
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.399-405
    • /
    • 2017
  • We manufactured the long fiber-reinforced thermoplastic prototype of under cover using in-line compounding technology, and investigated the formability, mechanical properties and durability of the prototype of under cover. We manufactured the injection mold for the prototype through injection molding analysis and consideration of weight reduction. We investigated the formability of the prototype by evaluating the residual length and dispersion of fiber, and also tested the mechanical properties such as flexural strength, stiffness and impact strength. We investigated the durability of the prototype by the Key-Life Test(KLT) method which is generally used for the automotive interior parts.

PC를 이용한 사출성형에서의 CAE기술 -C-FLOW/Micor-STANS를 중심으로-

  • 김상국;허용정
    • Journal of the KSME
    • /
    • v.30 no.S1
    • /
    • pp.45-55
    • /
    • 1990
  • 과거 대형컴퓨터와 중형컴퓨터에서만 가능하던 유한요소법을 이용한 CAE기술들이 마이크로컴퓨 터의 발달에 따라 개인용 컴퓨터에서도 가능하게 되었다. 여기서는 사출제품 설계 및 금형설계에 있어 필수적인 설계도구로 사용되는 CAE프로그램중 구조 해석용 프로그램인 Micro-STANS와 사출공정 해석용 프로그램인 C-FLOW가 마이크로컴퓨터 상에서 이용 가능함을 설명하였다. 이러 한 CAE 소프트웨어들은 비용과 노력이 많이 소모되는 시제품제작이 없이도 사출공정에 대한 정 보와 제품강도에 대한 정보를 얻을 수 있게 함으로써 초기설계단계에서 제품의 설계평가가 가능 하게 하였다. 보다 높은 생산성, 보다 낳은 설계 납기단축, 비용절감을 도모해야 하는 사출제품 설계자들에게 초기단계에서 제품의 설계 및 가공에 대한 문제점을 미리 파악할 수 있게 함으로써 대단히 강력한 설계 도구로 이용될 수 있을 것이다.

  • PDF

Flow Analysis and Evaluation of Injection-Molded Front Panel (백라이트 패널(back light panel)의 유동해석 및 평가)

  • 강성남;허용정
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.11a
    • /
    • pp.144-146
    • /
    • 2001
  • The synthesis of injection-molded parts has been done empirically, since it requires profound knowledge about injection molding which is not available to designers through current CAD systems. Appropriate U3 programs for mold design analysis to an existing geometric modeler is used to provide designers, at the initial stage, with comprehensive process knowledge for synthesis, performance analysis and feature-based geometric modeling.

Design and Implementation of the Front part of Agricultural Electric Vehicles using Vacuum Forming (진공성형을 이용한 농업용 전기차 전면부 설계 및 구현)

  • Lee, Hun-Kee;Park, Myeong-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.107-108
    • /
    • 2021
  • 농업용 전기차는 일반 전기차에 비해 경량성 및 연료의 효율성이 매우 중요하다. 또한, 충돌에 대비한 재질의 강도적인 측면에서 다소 자유로움을 가진다. 본 연구에서는 레이저 가공, 절곡, 도장 등의 복잡한 절차를 통한 가공 공정을 대체하여 생산의 효율성을 극대화 할 수 있는 진공성형을 위한 전기차 전면부 3차원 설계 방법을 제안한다. 보닛 및 휀더의 3차원 설계 및 진공성형 금형 기술 개발을 통하여 제품의 안정성과 생산성 및 편의성을 향상시키는 것이 연구의 주요 목적이다. 주요 연구 절차는 CATIA를 이용한 설계 결과물을 바탕으로 ABAQUS를 이용한 구조해석을 통해 안정성을 확인하고 3D Scanner를 이용하여 시제품의 치수 확인을 통한 실효성을 검증한다. 본 연구의 결과물은 농업용 전기차 주 고객층인 고령자 및 여성 농업 종사자들에게 널리 사용될 수 있을 것으로 사료된다.

  • PDF

A Convergent Investigation on the Structural Analysis of Leaf Spring at Large Truck (대형트럭에서의 판스프링의 구조해석에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.155-159
    • /
    • 2020
  • In this study, the structural analyses were performed on the number of leaf springs in large truck. The deformations were small for all four models. The maximum stress of model A was found to be the largest, and that of model D was the smallest. Model A was seen about 1.87 times larger than model D and about 1.52 times larger than model B. The maximum stresses of models C and D were seen to be less. In terms of the effect to reinforce one more overlapping spring, The effect of the enhancement of the strength of model D was shown to be small by comparing with model C. Therefore, model C with three overlapping springs is thought to be efficient in design and good in strength. The structural strength of leaf spring can be evaluated by applying this study result to the leaf spring at large truck. And it is seen that the result can be the design of the leaf spring with durability at large truck and the aesthetic convergence.

Comparative Study on the Electromagnetic-Heat Transfer Co-simulation Analysis and High Frequency Induction Heating of Ti-6Al-4V Alloy (전자기-열전달 연동 해석과 Ti-6Al-4V 합금 고주파 유도가열 실험에 대한 비교 분석에 관한 연구)

  • Bae, Jinki;Choi, Jinkyu;Cho, Mingoo;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.1-7
    • /
    • 2021
  • Demand for Ti-6Al-4V alloy is increasing in various industries because of its superior strength to weight and high-temperature strength properties. However, due to its low formability at room temperature, it is formed at high temperature, where its productivity and efficiency are low. The current high-temperature forming method has many limitations because it involves heating the specimen by heating the lower mold. It is expected that a process using high frequency induction heating, which can locally heat the product, can improve its productivity. In addition, time and cost can be saved if the process is simulated in advance with a reliable analysis. In this paper, we verified the reliability of the analysis by comparing the result of heating the specimen to 850 ℃ by high frequency induction heating and the temperature obtained through the co-simulation analysis.

A Convergent Study on Durability over the Exhaust Manifold Shape of Medium-sized Car (중형 자동차의 배기매니폴드 형상에 따른 내구성에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.199-204
    • /
    • 2021
  • In this study, the configurations of the two engine exhaust manifolds were designed. And the strengths and durabilities were analyzed through the structural analysis and natural frequency analyses of these models. As the result of structural analysis, the strength of model A is much better than that of model B because the maximum stress and deformation of model B are considerably greater than those of model A by more than 9 and 39 times, respectively. It can also be confirmed that model A has the durability better than model B because the maximum frequency of model A is greater than the natural frequency of model B and its maximum deformation is smaller than model B. The result of this study can be used to investigate the durability due to the exhaust manifold shape of medium-sized car without actual test. It also seems to be helpful in the aesthetic convergent design of small car muffler.

Analytical evaluation and study on the springback according to the cross sectional form of 1.2GPa ultra high strength steel plate (1.2GPa급 초고강도강판의 단면 형태에 따른 스프링백에 관한 해석적 평가 및 연구)

  • Lee, Dong-Hwan;Han, Seong-Ryeol;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.17-22
    • /
    • 2019
  • Currently, studies on weight reduction and fuel efficiency increase are the most important topics in the automotive industry and many studies are under way. Among them, weight reduction is the best way to raise fuel efficiency and solve environmental pollution and resource depletion. Materials such as aluminum, magnesium and carbon curing materials can be found in lightweight materials. Among these, research on improvement of bonding technology and manufacturing method of materials and improvement of material properties through study of ultrahigh strength steel sheet is expected to be the biggest part of material weight reduction. As the strength of the ultra hight strength steel sheet increases during forming, it is difficult to obtain the dimensional accuracy as the elastic restoring force increases compared to the hardness or high strength steel sheet. It is known that the spring back phenomenon is affected by various factors depending on the raw material and processing process. We have conducted analytical evaluations and studies to analyze the springback that occurs according to the cross-sectional shape of the ultra high tensile steel sheet.