• Title/Summary/Keyword: 금속 이온

Search Result 1,828, Processing Time 0.033 seconds

Characterization of Concentrations of Fine Particulate Matter in the Atmosphere of Pohang Area (포항지역 대기 중 초미세먼지(PM$_{2.5}$)의 오염특성평가)

  • Baek, Sung-Ok;Heo, Yoon-Kyeung;Park, Young-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.302-313
    • /
    • 2008
  • The purposes of this study are to investigate the concentration levels of fine particles, so called PM$_{2.5}$, to identify the affecting sources, and to estimate quantitatively the source contributions of PM$_{2.5}$. Ambient air sampling was seasonally carried out at two sites in Pohang(a residential and an industrial area) during the period of March to December 2003. PM$_{2.5}$ samples were collected by high volume air samplers with a PM$_{10}$ Inlet and an impactor for particle size segregation, and then determined by gravimetric method. The chemical species associated with PM$_{2.5}$ were analyzed by inductively coupled plasma spectrophotometery(ICP) and ion chromatography(IC). The results showed that the most significant season for PM$_{2.5}$ mass concentrations appeared to be spring, followed by winter, fall, and summer. The annual mean concentrations of PM$_{2.5}$ were 36.6 $\mu$g/m$^3$ in the industrial and 30.6 $\mu$g/m$^3$ in the residential area, respectively. The major components associated with PM$_{2.5}$ were the secondary aerosols such as nitrates and sulfates, which were respectively 4.2 and 8.6 $\mu$g/m$^3$ in the industrial area and 3.7 and 6.9 $\mu$g/m$^3$ in the residential area. The concentrations of chemical component in relation to natural emission sources such as Al, Ca, Mg, K were generally higher at both sampling sites than other sources. However, the concentrations of Fe, Mn, Cr in the industrial area were higher than those in the residential area. Based on the principal component analysis and stepwise multiple linear regression analysis for both areas, it was found that soil/road dust and secondary aerosols are the most significant factors affecting the variations of PM$_{2.5}$ in the ambient air of Pohang. The source apportionments of PM$_{2.5}$ were conducted by chemical mass balance(CMB) modeling. The contributions of PM$_{2.5}$ emission sources were estimated using the CMB8.0 receptor model, resulting that soil/road dust was the major contributor to PM$_{2.5}$, followed by secondary aerosols, vehicle emissions, marine aerosols, metallurgy industry. Finally, the application and its limitations of chemical mass balance modeling for PM$_{2.5}$ was discussed.

Competitive Adsorption Characteristics of Rapid Cooling Slag in Single- and Multi-Metal Solutions (단일 및 복합중금속용액에서 제강급랭슬래그의 경쟁흡착특성)

  • Park, Jong-Hwan;Kim, Hong-Chul;Kim, Seong-Heon;Lee, Seong-Tae;Kang, Byung-Hwa;Kang, Se-Won;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • BACKGROUND: Heavy metal adsorption not only depends on rapid cooling slag(RCS) characteristics but also on the nature of the metals involved and on their competitive behavior for RCS adsorption sites. The goal of this study was to investigate the competitive absorption characteristics of Cu, Cd and Zn in single- and multi-metal forms by RCS.METHODS AND RESULTS: Both single- and multi-metal adsorption experiments were conducted to determine the adsorption characteristics of RCS for the heavy metals. Adsorption behaviors of the heavy metals by RCS were evaluated using both the Freundlich and Langmuir adsorption isotherm equations. The maximum adsorption capacities of metals by RCS were in the order of Cu(16.6 mg/g) > Cd(8.1 mg/g) > Zn(6.2 mg/g) in the single-metal adsorption isotherm and Cu(14.5 mg/g) >> Zn(1.3 mg/g) > Cd(0.6 mg/g) in the multi-metal adsorption isotherm. Based on data obtained from Freundlich and Langmuir adsorption models and three-dimensional simulation, multi-metal adsorption behaviors differed from single- metal adsorption due to competition. Cadmium and Zn were easily exchanged and substituted by Cu during multi-metal adsorption.CONCLUSION: Results from adsorption experiments indicate that competitive adsorption among metals increases the mobility of these metals.

Occurrence and Chemical Composition of Chlorite and White Mica from Drilling Core (No. 04-1) at Gubong Au-Ag Deposit Area, Republic of Korea (구봉 금-은 광상일대 시추코아(04-1)에서 산출되는 녹니석과 백색운모의 산상 및 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.273-288
    • /
    • 2023
  • The Gubong Au-Ag deposit, which has been one of the largest deposits (Unsan, Daeyudong, Kwangyang) in Korea, consists of eight lens-shaped quartz veins (a mix of orogenic-type and intrusion-related types) that filled fractures along fault zones within Precambrian metasedimentary rock. Korea Mining Promotion Corporation found a quartz vein (referred to as the No. 6 vein with a grade of 27.9 g/t Au and a width of 0.9 m) at a depth of -728 ML by drilling (No. 90-12) conducted in 1989. Korea Mining Promotion Corporation conducted drilling (No. 04-1) in 2004 to investigate the redevelopment's possibility of the No. 6 vein. The author studied the occurrence and chemical composition of chlorite and white mica using wallrock, wallrock alteration and quartz vein samples collected from the No. 04-1 drilling core in 2004. The alteration of studied samples occurs chloritization, sericitization, silicification and pyritization. Chlorite and white mica from mineralized zone at a depth of -275 ML occur with quartz, K-feldspar, calcite, rutile and pyrite in wallrock alteration zone and quartz vein. Chlorite and white mica from ore vein (No. 6 vein) at a depth of -779 ML occur with quartz, calcite, apatite, zircon, rutile, ilmenite, pyrrhotite and pyrite in wallrock alteration zone and quartz vein. Chlorite from a depth of -779 ML has a higher content of Al and Mg elements and a lower content of Si and Fe elements than chlorite from a depth of -275 ML. Also, Chlorites from a depth of -275 ML and -779 ML have higher content of Si element than theoretical chlorite. Compositional variation in chlorite from a depth of -275 ML was mainly caused by phengitic or Tschermark substitution [Al3+,VI + Al3+,IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV], but compositional variation from a depth of -779 ML was mainly caused by octahedral Fe2+ <-> Mg2+ (Mn2+) substitution. The interlayer cation site occupancy (K+Na+Ca+Ba+Sr = 0.76~0.82 apfu, 0.72~0.91 apfu) of white mica from a depth of -275 ML and -779 ML have lower contents than theoretical dioctahedral micas, but octahedral site occupancy (Fe+Mg+Mn+Ti+Cr+V+Ni = 2.09~2.13 apfu, 2.06~2.14 apfu) have higher contents than theoretical dioctahedral micas. Compositional variation in white mica from a depth of -275 ML was caused by phengitic or Tschermark substitution [(Al3+)VI + (Al3+)IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV], illitic substitution and direct (Fe3+)VI <-> (Al3+)VI substitution. But, compositional variation in white mica from a depth of -779 ML was caused by phengitic or Tschermark substitution [(Al3+)VI + (Al3+)IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV] and direct (Fe3+)VI <-> (Al3+)VI substitution.

THE EFFECTS OF CRYSTAL GROWTH ON SHEAR BOND STRENGTH OF ORTHODONTIC BRACKET ADHESIVES TO ENAMEL SURFACE (Crystal growth에 의한 법랑질 표면처리가 교정용 브라켓 접착제의 전단결합강도에 미치는 영향)

  • Lee, Young-Jun;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.839-852
    • /
    • 1997
  • It has been submitted that different ion solutions containing sulfate induce crystal growth and might substitute conventional acid etching for pretreatment of enamel in orthodontic bonding(${\AA}rtun$ et al., Am. J. Orthod. 85, 333, 1984). This investigation was designed to evaluate the relevance of crystal growth on the enamel surface as an alternative to conventional acid etching in direct bonding of orthodontic brackets. Annexing Li2SO4, MgSO4, K2SO4 respectively in the solution with $25\%$ polyacrylic md 0.3M sulfuric acids were employed to enhance the crystal growth. Human bicuspids were treated with various parameters as combinations of crystal growth and glass ionomer cement, crystal growth and orthodontic resin, acid etching and orthodontic resin for an investigative purpose. Crystal growth solution containing MgSO4 showed the highest shear bond strength(15.6MPa) within the groups of bonding brackets with glass ionomer cement(p<0.01). Bonding with glass ionomer cement on the surface of crystal growth demonstrated higher shear bond strength than with orthodontic resin(p<0.001). Bonding with glass ionomer cement on the surface treated with crystal growth solution containing MgSO4 or K2SO4 was not different shear bond strength statistically from bonding with orthodontic resin on the acid-etched surface. It suggests that bonding brackets with glass ionomer cement on the surface treated with crystal growth solution containing MgSO4 or K2SO4 is a potential alternative to bonding with resin on the acid etched sufrace.

  • PDF

Synthesis, Spectroscopic, and Biological Studies of Chromium(III), Manganese(II), Iron(III), Cobalt(II), Nickel(II), Copper(II), Ruthenium(III), and Zirconyl(II) Complexes of N1,N2-Bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide (N1,N2-bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide의 크롬(III), 망간(II), 철(III), 코발트(II), 니켈(II), 구리(II), 루테늄(III) 및 산화 지르코늄(II) 착물에 대한 합성과 분광학 및 생물학적 연구)

  • Al-Hakimi, Ahmed N.;Shakdofa, Mohamad M.E.;El-Seidy, Ahemd M.A.;El-Tabl, Abdou S.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.418-429
    • /
    • 2011
  • Novel chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), ruthenium(III), and zirconyl(II) complexes of $N^1,N^2$-bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide ($H_4L$, 1) have been synthesized and characterized by elemental, physical, and spectral analyses. The spectral data showed that the ligand behaves as either neutral tridentate ligand as in complexes 2-5 with the general formula $[H_4LMX_2(H_2O)]{\cdot}nH_2O$ (M=Cu(II), Ni(II), Co(II), X = Cl or $NO_3$), neutral hexadentate ligand as in complexes 10-12 with the general formula $[H_4LM_2Cl_6]{\cdot}nH_2O$ (M=Fe(III), Cr(III) or Ru(III)), or dibasic hexadentate ligand as in complexes 6-9 with the general formula $[H_2LM_2Cl_2(H_2O)_4]{\cdot}nH_2O$ (M = Cu(II), Ni(II), Co(II) or Mn(II), and 13 with general formula $[H_4L(ZrO)_2Cl_2]{\cdot}8H_2O$. Molar conductance in DMF solution indicated the non-ionic nature of the complexes. The ESR spectra of solid copper(II) complexes 2, 5, and 6 showed $g_{\parallel}$ >g> $g_e$, indicating distorted octahedral structure and the presence of the unpaired electron in the $N^1,N^2$ orbital with significant covalent bond character. For the dimeric copper(II) complex $[H_2LCu_2Cl_2(H_2O)_4]{\cdot}3H_2O$ (6), the distance between the two copper centers was calculated using field zero splitting parameter for the parallel component that was estimated from the ESR spectrum. The antibacterial and antifungal activities of the compounds showed that, some of metal complexes exhibited a greater inhibitory effect than standard drug as tetracycline (bacteria) and Amphotricene B (fungi).

Differences in Structural Characteristics and Eu(III) Complexation for Molecular Size Fractionated Humic Acid (분자량별 분류에 따른 휴믹산의 구조적 특성 및 Eu(III)과의 착물 반응 특성 비교에 대한 연구)

  • Shin, Hyun-Sang;Rhee, Dong-Seok;Kang, Kihoon
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.159-166
    • /
    • 2001
  • A humic acid(HA, Aldrich Co) sample was subjected to ultrafiltration for molecular size fractionation and three fractions of different nominal size($F_1$: 1,000-10,000 daltons; $F_2$: 10,000-50,000 daltons; $F_3$: 100,000-300,000 daltons) were obtained. The structural characteristics of the size-fractionated HA were analyzed using their IR and solid state C-13 NMR spectral data, and the carboxylate group contents of the humic acids were determined using their pH titration data. The $^7F_0-{^5}D_0$ excitation spectra of Eu(III) complexes of the size-fractionated mgHA in aqueous solution were acquired($[Eu(III)]=1.0{\times}10^{-4}mol\;L^{-1}$, $(HA)=470-970mg\;L^{-1}$) at pH 5.0 using a pulsed tunable laser system, in which metal binding properties of the size-fractionated HA were elucidated and compared on another. Characterization of the IR and C-13 NMR spectral data indicated that the fraction($F_3$) with molecules of larger size were primarily aliphatic, while the fractions($F_1$, $F_2$) with smaller molecules of less than 50,000 daltons were predominantly aromatic. Titration data were consistent with an increase in the number of carboxylate groups per unit mass as molecular size became smaller. The $^7F_0-{^5}D_0$ excitation spectral data of Eu(III)-humate complexes showed that the peak maxima on these spectra were shifted toward lower energies with increasing molecular size of HA, indicating the higher degree of bindings of the Eu in the molecules of larger size. We also discussed the relationship of the lower energy shifts of the maximum peaks with increasing the molecular size of HA with the structural differences of the size-fractionated HA.

  • PDF

Characteristics of Rahnella aquatilis Strain AY2000 for an Anti-Yeast Substance Production (항효모성 물질 생산을 위한 Rahnella aquatilis AY2000 균주의 생육특성)

  • Kang, Min-Jung;Lee, Bok-Kyu;Kim, Kwang-Hyeon
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.215-220
    • /
    • 2008
  • Rahnella aquatilis AY2000 has an unique characteristic which produces an anti-yeast substance (AYS). The AYS of the strain AY2000 was always secreted on agar plate, however, its activity in liquid culture was labile upon storage of the medium. In this paper, cultural conditions of the strain AY2000 for the AYS production were investigated in liquid culture, and minimal inhibitory concentration (MIC) against Saccharomyces cerevisiae was determined for the AYS activity. MIC of the AYS cultured in PYG broth at $^25{\circ}C$ for 24 hr was $23.5{\mu}g/mL$, however, that in MYCS (pH 5.5) broth at the same condition was $15.5{\mu}g/mL$. The activity of the AYS had increased rather in MYCS broth excluded $NH_4$-citrate than in the same broth contained $NH_4$-citrate, and MIC of the AYS produced in MYCS broth without $NH_4$-citrate was $15.5{\mu}g/mL$. When the strain AY2000 was maintained in MYCS broth without $NH_4$-citrate but added $100{\mu}M$ $FeCl_3$, the activity of the AYS had increased and its MIC was $7.8{\mu}g/mL$. MIC of the AYS was $7.8{\mu}g/mL$ after the strain AY2000 was cultured in MYCS broth containing $100{\mu}M$ $FeCl_3$ without $NH_4$-citrate, however, its MIC was $31.3{\mu}g/mL$ after 48-60 hr culture in the same broth.

Changes in Chemical and Microbiological Properties of Spring Waters in Tongyeoung Area (통영시내 약수의 화학적 및 세균학적 품질변화)

  • 최종덕;김정균
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.4
    • /
    • pp.328-333
    • /
    • 2000
  • This study was carried out to changes in chemical and microbiological properties of spring waters in Tongyeoung area. In this paper, ninety spring water samples were collected from 9 station for 11 month to evaluated chemical and bacteriological water quality. Range and mean values of constituents of the samples are as followed; water temperature 5.2~25.8$^{\circ}C$, 16.3$^{\circ}C$, pH 6.0~7.2, 6.7, total residue 33.6~210 mg/1, 90.6 mg/1, turbidity 0.35~5.48, 1.45NTU, KMnO4 consumed 0.51~4.21 mg/1, 1.39 mg/1, chloride ion 6.23~42.5, 16.7 mg/l, phosphate-phosphorus ND-0.04, 0.02 mg/1, nitrite-nitrogen ND~0.02, 0.01 mg/1, nitrate-nitrogen ND~3.56, 1.42 mg/1, ammonia-nitrogen ND~0.20, 0.14 mg/1, dissolved total nitrogen ND~3.78, 1.57 mg/1, iron 0.04~0.28, 0.13ppm, zinc 0.03~0.66, 0.20ppm, mangan ND~0.01, allumium 0.14~0.58, 0.39ppm, copper ND~0.01, 0.01, lead ND~0.01, 0.01ppm, Arsenic ND~0.01, 0.01ppm, mercury ND~0.02, chrome not detected, cadmium not detetced respectively. The viable cell counts of the spring waters ranged 5.0~760/m1(means 130/m1). Range and mean value of total coliform and focal coliform MPN's of the spring waters were 0~2,400MPN/100 ml, 73MPN/100 ml and 0~540MPN/100 ml, 21MPN/100 ml. Spring water quality was usually poor with viable cell counts exceeding 130 CFU/liter and the coliform counts in spring waters of 73 MPN/liter. Composition of coliform by IMViC reaction was 33.3% E. coli, 15.6% Citrobacter freundii, 35.6% Klebsiella aerogenes and others.

  • PDF

Characteristics of Geochemical Behaviors of Trace Metals in Drainage from Abandoned Sechang Mine (세창 폐금속광산 수계에서 미량원소의 지구화학적 거동특성 규명)

  • Kang Min-Ju;Lee Pyeong-Koo;Youm Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.213-227
    • /
    • 2006
  • The geochemical evolution of mine drainage and leachate from waste rock dumps and stream water in Pb-As-rich abandoned Sechang mine area was investigated to elucidate mechanisms of trace metals. Total and sequential extractions were applied to estimate the distribution of trace metals in constituent phases of the waste rocks and to assess the mobility of trace metals according to physicochemical conditions. These discharged waters varied largely in chemical composition both spatially and temporally, and included cases with significant]y low pH (in the range 2.1-3.3), and extremely sulphate (up to 661 mg/l and metal contents (e.g. up to 169 mg/l for Zn, 27 mg/l for As, 3.97 mg/l for Pb, 2.99 mg/l for Cu, and 1.88 mg/l for Cd). Arsenic and heavy metal concentrations at the down-stream of Sechang mine have been decreased nearly to the background level in downstream sites (sites 8 and 16) without any artificial treatments. The oxidation of Fe-sulfides and the subsequent hydrolysis, of Fe(II), with precipitation of poorly crystallized minerals, constituted an efficient mechanism of natural attenuation which reduces considerably the transference of trace metals (i.e. Fe and As) to rivers. The dilution of drainage by mixing with pristine waters provoked an additional decrease of trace metal concentrations and a progressive pH increase. On the other hand, the most soluble cations (i.e. Zn) remained significantly as dissolved solutes until the pH was raised to approximately neutral values. With respect to ecotoxicity, it is likely that the Zn pollution is of particular concern in Sechang mine area. This was confirmed by the sequential extraction experiment, where Zn in wet waste-rock samples occurred predominantly in the exchangeable fraction (65-89% of total), while Pb was the highest in the reducible and carbonate fractions, and Cd, Cu and As in the residual fraction. Pb concentration in the readily available exchangeable fraction (34-48% of total) was dominated for dried waste rock samples. Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreased in the order of Zn>Pb>Cd>As=Cu.

Glycoprotein Isolated from Morus indica Linne Has an Antioxidative Activity and Inhibits Signal Factors Induced by Bisphenol A in Raw 264.7 Cells (뽕잎 당단백질의 항산화능과 Raw 264.7 세포에 있어서 bisphenol A에 유도된 신호전달인자의 억제)

  • Shim, Jae-Uoong;Lee, Sei-Jung;Oh, Phil-Sun;Lim, Kye-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.209-216
    • /
    • 2007
  • The present study investigated anti-oxidative and anti-inflammatory activity of glycoprotein isolated from Morus Indica Linne (MIL glycoprotein). We found that MIL glycoprotein has a molecular weight of 32 kD and consists of carbohydrate (40.03%) and protein (59.97%), and that it has a strong scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical $({\cdot}OH)$, and superoxide anion $(O_2{\cdot}\;^-)$ radicals. In addition, MIL glycoprotein had a stable character and an optimal DPPH radical scavenging activity in the alkaline and neutral pH solution, and up to at 105. However, the results indicated that it has a minimal scavenging activity in the metal ionic solution ($Ca^{2+}$, $Mn^{2+}$, and $Mg^{2+}$) in the presence of EDTA. In addition, we further investigated whether MIL glycoprotein scavenges oxygen radicals and blocks inflammation-related signals in the bisphenol A (BPA)-stimulated Raw 264.7 cells. The results in this study showed that it has a character to scavenge the productions of reactive oxygen species (ROS) and nitric oxide (NO) dose-dependently. Also it blocked the activities of inflammation-related signals such as nuclear factor-kappa B ($NF-{\kappa}B$) and inducible nitric oxide synthase (iNOS). For example, it had an inhibitory effect on the activation of $NF-{\kappa}B$ (p50) and iNOS proteins at 200 ${\mu}g/mL$ MIL glycoprotein. Here, we speculate that MIL glycoprotein is one of natural antioxidants and of modulators of the BPA-induced inflammation.