• Title/Summary/Keyword: 금속 영상왜곡

Search Result 23, Processing Time 0.027 seconds

The Impact of Signal Intensity and Image Distortion Magnetic Resonance Imaging in the Orthopedic Prosthetic Metal (자기공명영상에서 정형보철 금속이 신호강도와 영상왜곡에 미치는 영향)

  • Kim, Hyeong-Gyun;Choi, Seong-Dae
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.321-326
    • /
    • 2012
  • Used as an ingredient in the hospital for orthopedic prosthetic stainless and titanium metal the same size as on the MRI diagnostic value of imaging were compared. Center of images, background high band portion of the video signal is converted into a weighted intensity values Normal images and compared. The area of normal slice and also the distortion of images and cross-sectional imaging of a range of quantitative and sagittal planes were compared. As a result, the periphery high band signal intensity values of Stainless video phantom 2, pig bone 1.8, Titanium imaging of phantom 1.7 has higher value than Normal video pig bone 1.3 times the signal strength rivers. MRI distortion of the shape and the distortions of the range, if the cross-sectional area compared to Normal Slice Stainless case of phantom 65.8 %, pig bone 61.5 %, Titanium distortion phantom 23.1 %, pig bone 38.5 % of the range of community found. In this experiment, as a result, MRI was found to be Titanium more diagnostic value than the specimen with respect to the signal intensity weighted value and low distortion range, Stainless.

Theoretical Investigation of Metal Artifact Reduction Based on Sinogram Normalization in Computed Tomography (컴퓨터 단층영상에서 사이노그램 정규화를 이용한 금속 영상왜곡 저감 방법의 이론적 고찰)

  • Jeon, Hosang;Youn, Hanbean;Nam, Jiho;Kim, Ho Kyung
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.303-314
    • /
    • 2013
  • Image quality of computed tomography (CT) is very vulnerable to metal artifacts. Recently, the thickness and background normalization techniques have been introduced. Since they provide flat sinograms, it is easy to determine metal traces and a simple linear interpolation would be enough to describe the missing data in sinograms. In this study, we have developed a theory describing two normalization methods and compared two methods with respect to various sizes and numbers of metal inserts by using simple numerical simulations. The developed theory showed that the background normalization provide flatter sinograms than the thickness normalization, which was validated with the simulation results. Numerical simulation results with respect to various sizes and numbers of metal inserts showed that the background normalization was better than the thickness normalization for metal artifact corrections. Although the residual artifacts still existed, we have showed that the background normalization without the segmentation procedure was better than the thickness normalization for metal artifact corrections. Since the background normalization without the segmentation procedure is simple and it does not require any users' intervention, it can be readily installed in conventional CT systems.

Determining the Location of Metallic Needle from MR Images Distorted by Susceptibility Difference (자화율 차이로 인해 왜곡된 영상으로부터 금속 바늘의 위치 결정)

  • Kim, Eun-Ju;Kim, Dae-Hong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.2
    • /
    • pp.87-94
    • /
    • 2010
  • Purpose : To calculate the appearance of the image distortion from metallic artifacts and to determine the location of a metallic needle from a distorted MR image. Materials and Methods : To examine metal artifacts, an infinite metal cylinder in a strong magnetic field are assumed. The cylinder’s axis leaned toward the magnetic field along some arbitrary angle. The Laplace equation for this situation was solved to investigate the magnetic field distortion, and the simulation was performed to evaluation the image artifact caused by both readout and slice-selection gradient field. Using the result of the calculation, the exact locations of the metal cylinder were calculated from acquired images. Results : The distances between the center and the folded point are measured from images and calculated. Percentage errors between the measured and calculated distance were less than 5%, except for one case. Conclusion : The simulation was successfully performed when the metal cylinder was skewed at an arbitrary tilted angle relative to the main magnetic field. This method will make it possible to monitor and guide both biopsy and surgery with real time MRI.

Metal Artifact Caused by Magnetic Field Strength and Sequence on T1WI-MRI (자기공명영상에서 자장세기와 시퀀스에 따른 아티팩트 변화)

  • Ko, Seong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.302-308
    • /
    • 2010
  • In MRI, the Ferromagnetic artifact is generated by the metalization within in which the before inspection removal is impossible and the distortion of an image is brought. The distortion measure according to the steel for each sequence of T1 image and magnetic field intensity are analyzed and minimized method is looked into. We used SIEMENS 1.5T and 3.0T MRI for experiment equipment. First, it places within the Phantom making a metalization(Ti+Al, Stainless, Nitinol) on 1.5T, 3.0T MRI and the T1 weighted image for each Sequence is acquired. The distortion of an image and about adjacent portion change of the metal material were compared through the obtained image, we analyzed. In all metalizations, a distortion was generated and a distortion was few in particularly, and Titanium-Aluminium alloy. And the extent of a distortion was worse image in the Turbo spin Echo. The use of the Titanium-Aluminium alloy the inserted in an internal material of the metalization is recommend. and, equipment of 1.5T the patient inserting a metal in an internal is used in an inspection than equipment of 3.0T. Also, the sequence is suitable when it obtains the optimum T1 weighted image of an impersonate to use the Turbo spin Echo.

Quantitative evaluation of MRI distortion using orthopedic prosthetic metal (정형보철용 금속을 이용한 자기공명영상왜곡의 정량적 평가)

  • Kim, Hyeonggyun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Despite the many advantages of magnetic resonance imaging in orthopedic prosthetic body image distortion to the differences in the magnetic susceptibility occurs. Attached to the phantom and pork produced by the same $65{\times}15{\times}2mm$ stainless steel and titanium specimen examined the relationship between magnetic resonance imaging and phantom images, the signal intensity changes of the subcutaneous tissue, fat-suppressed quantitative assessment of the degree through the length of image distortion and pig bones. Stainless steel to titanium to 2.8 times 4.4 times in the longitudinal direction than in the direction of the height of large image distortion, signal strength is relatively low 58.5%. Normal 56.2% compared to the subcutaneous tissue, fat-suppressed, were stainless steel 16.04%, 54.53% titanium. Experimental results than the diagnostic value of magnetic resonance imaging (MRI) images of stainless steel with a titanium metal if better could see.

Changes in the Standardized Uptake Value According to the Type of Metal of Dental Prosthesis in PET-CT Fusion Image (PET-CT 융합 영상에서 치과보철물의 금속 종류에 따른 표준섭취계수 값의 변화)

  • Han, Sang-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.117-122
    • /
    • 2018
  • In this study, HU(hounsfield unit) value of CT generated by dental prosthesis was measured according to the type of metal when PET-CT was performed, and the degree of distortion and standard deviation of SUV(standard uptake value) and to propose a method to reduce errors in image reading. PET-CT was performed using actual teeth, metal crown, gold crown, titanium, and zirconia dental prosthesis. Compared with general teeth, the SUV value increased with increasing HU value. The SUV value of metal crown, titanium, and zirconia was increased by 37% and the gold crown increased by 45.4%. In addition, image distortions were small in general teeth, metal crown, titanium, and zirconia, but hard curing of the gold crown occurred and image distortion occurred. Therefore, since the metal type of the dental prosthesis affects the SUV value, the NAC(non attenuation correction) PET image of the dental prosthesis can be helpful in the diagnosis of the patient using the gold material.

Distortion of Magnetic Resonance Imaging for Different Types of Orthodontic Material (치과 교정 물질에 따른 자기공명영상의 왜곡)

  • Song, Hyun-Og;Lim, Cheong-Hwan;Lee, Sang-Ho;Yang, Oh-Nam;Baek, Chang-Moo;Jung, Hong-Ryang
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.439-446
    • /
    • 2014
  • To evaluate the effects of an artifact by metal material for orthodontics in Magnetic Resonance Image (MRI) examination, wires and brackets used in orthodontics were selected and compared. Using a head coil, a $T_2$-weighted image, $T_1$-weighted image and FLAIR image were obtained. With obtained images, the sizes of the artifacts were measured and compared using Image J Program. In the research, the material with the biggest artifact in the wires and brackets for orthodontics was stainless steel wire. In the future, selecting and developing metal for correction should be considered also in other fields along with the purpose of orthodontics.

Accurate Localization of Metal Electrodes Using Magnetic Resonance Imaging (자기공명영상을 이용한 금속전극의 정확한 위치 결정)

  • Joe, Eun-Hae;Ghim, Min-Oh;Ha, Yoon;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.11-21
    • /
    • 2011
  • Purpose : Localization using MRI is difficult due to susceptibility induced artifacts caused by metal electrodes. Here we took an advantage of the B0 pattern induced by the metal electrodes by using an oblique-view imaging method. Materials and Methods : Metal electrode models with various diameters and susceptibilities were simulated to understand the aspect of field distortion. We set localization criteria for a turbo spin-echo (TSE) sequence usingconventional ($90^{\circ}$ view) and $45^{\circ}$ oblique-view imaging method through simulation of images with various resolutions and validated the criteria usingphantom images acquired by a 3.0T clinical MRI system. For a gradient-refocused echo (GRE) sequence, which is relatively more sensitive to field inhomogeneity, we used phase images to find the center of electrode. Results : There was least field inhomogeneity along the $45^{\circ}$ line that penetrated the center of the electrode. Therefore, our criteria for the TSE sequence with $45^{\circ}$ oblique-view was coincided regardless of susceptibility. And with $45^{\circ}$ oblique-view angle images, pixel shifts were bidirectional so we can detect the location of electrodes even in low resolution. For the GRE sequence, the $45^{\circ}$ oblique-view anglemethod madethe lines where field polarity changes become coincident to the Cartesian grid so the localization of the center coordinates was more facilitated. Conclusion : We suggested the method for accurate localization of electrode using $45^{\circ}$ oblique-view angle imaging. It is expected to be a novelmethodto monitoring an electrophysiological brain study and brain neurosurgery.

The usability of the image according to the frequency encoding gradient direction conversion in fixation using the non magnetic metal screw (비 자성 금속 screw를 이용한 고정술에서 주파수 부호화 경사 방향 변환에 따른 영상의 유용성)

  • Cho, Jae-Hwan;Lee, Hae-Kag;Park, Cheol-So
    • Journal of Digital Contents Society
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • Because of causing the geometrical transformation of the magnetic field, the patient implementing the fixation using the nonmagnetic metal screw causes the magnetic susceptibility artifact at an image. Thus, in this research, the distortion measure of the image according to the frequency oblique direction conversion tried to be compared in the magnetic susceptibility artifact occurence. First, the itself phantom inserting the nonmagnetic metal screw of the titanium component was made and the region of interest was set up and the frequency oblique direction the anterior - back side was converted to the right-to-left direction in the axial image and a right-to-left was converted to the upper side - bottom side in the coronal plane and the upper - bottom side was converted to the anterior - back side in the sagittal plane and the distortion measure of the region of interest was compared, it observed. In a result, when converting the frequency oblique direction, the distortion difference of the region of interest could be confirmed and it is considered to enhance the diagnostics efficiency changing the oblique direction appropriately.