• Title/Summary/Keyword: 금속 식각

Search Result 142, Processing Time 0.018 seconds

EFFECT OF VARIOUS RESIN CEMENTS TO THE SHEAR BOND STRENGTH IN THE ADHESION BRIDGE (접착성가공의치에서 세멘트 종류가 전단결합강도에 미치는 영향)

  • Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.791-799
    • /
    • 1996
  • The purpose of this study was to compare the shear bond strength of adhesion bridge by various resin cements. One hundred and foully 1st premolars were used. The teeth were cut below 2mm from CEJ and the coronal portions were used. The coronal portions were embeded with the acrylic resin and trimmed with sic paper until the flat plane with ${\phi}$ 4mm above acrylic resin sticks in height 5mm were casted with nonprecious metal and the using surfaces were treated with sic paper from #200 to #1200 and polished with alminum oxide paste. And then, the using surfaces were sandblasted and treated with the electrochemical etching. The teeth were divided into three groups of fourty two each. In group I, teeth and specimens were cemented with Panavia 21 In group II, teeth and specimens were cemented with Superbond In group I, teeth and specimens were cemented with All-Bond & composite resin cement Each group was subdivided into three subgroups according to the storage period ; one-day storage, fifteen-day storage, and thirty-day storage. The special jig was made. Then, the specimen and jig were mounted to Instron Universal Testing Machine and the failure were measured. The results were as follows. 1. There was statisfically significant difference between the failure loads of group I and group II and III after one day storage(P<0.01), 2. There was statisfically significant difference between the failure loads of group II and group I and III and between group I and group III at fifteen day storage(P<0.01). 3. There was statisfically significant difference between the failure loads of group I and II and group III after thirty day storage(P<0.01). 4. There was statisfically significant difference between the failure loads of one day storage and fifteen and thirty days storages in group III (P<0.01).

  • PDF

Solar Module with a Glass Surface of AG (Anti-Glare) Structure (연요철(Anti-Glare) 구조의 표면 유리 기판을 가지는 고효율 태양전지 모듈)

  • Kong, Dae-Young;Kim, Dong-Hyun;Yun, Sung-Ho;Bae, Young-Ho;Yu, In-Sik;Cho, Chan-Seob;Lee, Jong-Hyun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.233-241
    • /
    • 2011
  • Currently, solar module is using the two methods such as a glass-filled method or a super-straight method. The common point of these methods is to use glass structure on the front of solar module. However, the reflectance of the solar module is high depending on the height of the incident sunlight due to the flat surface of the module front glass. Purposed to solve these problems, AG (anti-glare) structures were formed on the glass surface. Next is fabrication methods of AG structure. First, uneven structure made by micro blaster equipment was dipped in Hydro-fluidic acid (HF) acid. HF acid process was carried out to remove particles and to make high transmittance. The reflectance and transmittance of the anti-glare glass was compared to those of the bare glass. The reflectance of anti-glare glass decreased approximately 1% compared with bare glass. The transmittance of anti-glare glass was similar to bare glass. According to the sample angle, the difference of the reflectance between bare glass and the anti-glare glass was about 19%. Isc and efficiency value of anti-glare glass on bare solar cell appeared about 3.01 mA and 0.228% difference compared with bare glass. Anti-glare glass on textured solar cell appeared about 9.46 mA and 0.741% difference compared with bare glass. As a result, the role of anti-glare in the substrate is to reduces the loss of sunlight reflected from the surface. In this study, therefore, AG structure on the solar cell was used to improve the efficiency of solar cell.