• Title/Summary/Keyword: 금속 수소화물

Search Result 97, Processing Time 0.031 seconds

Simultaneous Catalytic Reduction of NO and N2O over Pd-Rh Supported Mixed Metal Oxide Honeycomb Catalysts - Use of H2 or CO as a Reductant (혼합금속산화물에 담지된 Pd-Rh의 허니컴 촉매에서 NO와 N2O의 동시 환원 - H2 또는 CO 환원제의 사용)

  • Lee, Seung Jae;Moon, Seung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.96-104
    • /
    • 2009
  • In order to lower a reaction temperature with high conversions for simultaneous catalytic reduction of NO and $N_2O$ over Pd-Rh supported mixed metal oxide honeycomb catalysts, $H_2$ or CO was utilized as a reductant. When using the reductants, the effects of reaction conditions were examined in NO and $N_2O$ conversions, where reaction temperatures, concentrations of the reductants and oxygen and the concentration ratio of $N_2O$ to NO were varied. In using $H_2$ reductant, larger than 50% of NO and $N_2O$ conversions was observed at the temperatures below $200^{\circ}C$ in absence of $O_2$. In using CO reductant, NO and $N_2O$ conversions increased from the temperatures higher than $200^{\circ}C$ and $300^{\circ}C$, respectively. However, in use of both reductants, NO and $N_2O$ conversions decreased with increasing oxygen concentration. As a result, $H_2$ reductant could reduce simultaneously NO and $N_2O$ at relatively lower reaction temperature than CO. Also, NO and $N_2O$ conversions were less influenced by using $H_2$ reductant than CO one. Concentration ratio between NO and $N_2O$ did not affect their conversions regardless the type of reductants. Pretreatment of the catalyst in $H_2$ was more effective in simultaneous reduction of NO and $N_2O$ at low reaction temperature than that in $O_2$.

Study on the Characteristics of Hydrogen Storage according to the Structure of Storage Tank using Metal Hydride (수소저장합금을 이용한 수소저장탱크의 구조에 따른 수소저장 특성 연구)

  • Sim, Kyu-Sung;Myung, Kwang-Sik;Kim, Jung-Duk;Kim, Jong-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.90-99
    • /
    • 2002
  • In order to utilize hydrogen energy in a large-scale in the future, development of effective hydrogen storage method is essentially required as well as that of efficient hydrogen production method. The hydrogen storage method using metal hydrides has been holding the spotlight as a safer and higher-density hydrogen storage method than conventional hydrogen storage methods such as liquid hydrogen or compressed hydrogen storage method. However when metals react with hydrogen to store hydrogen as metal hydrides, they undergo exothermic reactions, while metal hydrides evolve hydrogen by endothermic reaction. Therefore, hydrogen storage tank should have such structure that it can absorb or release reaction heat rapidly and efficiently. In this study, a review on the improvement of the heat release and absorption structure in the hydrogen storage tank was conducted, and as a result, a new type of hydrogen storage tank with the structure of vertical-type wall was designed and manufactured. Experimental results showed that this new type of tank could be used as an efficient hydrogen storage tank because its structure is simpler and manufacture is easier than cup-type hydrogen storage tank with the structure of packed horizontal cup.

The Effect of Rolling on the Charge-Discharge Characteristic of Metal Hydride Electrode for Ni-MH Secondary Battery (압연이 Ni-MH 2차전지용 금속수소화물 전극의 충·방전 특성에 미치는 영향)

  • Park, Won;Chang, Sang-Min;Choi, Seung-Jun;Noh, Hak;Choi, Jeon;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.2
    • /
    • pp.165-171
    • /
    • 1996
  • The effect of rolling on the charge-discharge property was studied for metal hydride negative electrode. $(LM)Ni_{3.6}Al_{0.4}Co_{0.7}Mn_{0.3}$(pleateau pressure : below 1 atm at room temperature, volume expansion : 9%, entalpy : $8.7kcal/molH_2$) alloy was prepared by arc melting, and then it was coated with various copper weight percent. The copper coated alloys were then rolled with the different reduction ratio. From the results, it was found that the maximum discharge capacity increased with increasing reduction ratio, and 15wt% copper coated sample shows the highest discharge capacity, 324mAh/g, after rolling with 30% reduction ratio. In view of cycle life for the negative electrode, the 15wt% copper coated electrode which was rolled with 13% reduction ratio showed the longest cycle life compared with other electrodes.

  • PDF

A Study on the V22Ti16Zr16Ni39X7(X=Cr, Co, Fe, Mn, Al) Metal Hydride Electrodes (V22Ti16Zr16Ni39X7(X=Cr, Co, Fe, Mn, Al) 금속수소화물전극에 관한 연구)

  • Kim, Jeong-Seon;Cho, Won-Il;Cho, Byung-Won;Yun, Kyung-Suk;Kim, Sang-Joo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 1994
  • Lattice structure, hydrogen absorption characteristics, discharge capacity and cycle life of $V_{22}Ti_{16}Zr_{16}Ni_{39}X_7$(X= Cr, Co, Fe, Mn, Al) alloys were investigated. The matrix phases of these alloys were the C14 Laves phase. Chromium-containing alloy had a vanadium-rich phase in addition to the Laves phase. The chromium, maganese, or aluminum-containing alloys had lower hydrogen equilibrium pressure and larger hydrogen absorption content than the cobalt or iron-containing alloys. The discharge capacities of these alloys were 270~330mAh/g. The discharge capacity according to the alloying element X decreased in the order of Mn>Cr>Co, Al)Fe. The charge/discharge cycle lives of the chromium, cobalt or iron-containing alloys were longer than those of maganese or aluminum-containing alloys due to the lower vanadium dissolution rate.

  • PDF

Study of Oxygen Carriers with Single Metal Oxides for Chemical-Looping Combustion (Chemical-looping combustion을 위한 단일금속산화물인 산소운반체에 관한 연구)

  • Lee, J.B.;Park, J.S.;Choi, S.I.;Song, Y.W.;Yang, Y.S.;Kim, Y.H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.258-267
    • /
    • 2003
  • A new kind of oxygen carrier material is tested for chemical-looping combustion. NiO, CoO, $Fe_2O_3$ is chosen as metal oxide and YSZ as a binder. Hydrogen fuel is reacted with metal oxide (reduction of metal oxide) and then the reduced metal is successively oxidized by air. Dissolution method is examined to prepare the oxygen carriers. The effects of reaction temperature are measured by a TGA, mechanical strength and regenerability after 10 cycle are examined. $Fe_2O_3/YSZ$ oxygen carrier is bested in mechanical strength and we consider that NiO/YSZ after 3rd cycle are good oxygen carrier in according to reactor design.

A Study of Application on the Pulsating Heat Pipe for Heat Transfer Enhancement of Metal Hydride Alloy (수소 저장합금층의 열전달 촉진을 위한 진동형 히트 파이프 적용에 관한 연구)

  • Lee, Min-Jae;Im, Yong-Bin;Bae, Sang-Chul;Kim, Jong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.346-351
    • /
    • 2006
  • When metallic alloys are reacted to hydrogen, heat transfer of storage tank effects hydrogen storage rate and capacity. If pulsating heat pipe are used to improve heat transfer efficiency, production of hydrogen storage tank can be more simple and economical. Experiment of heat pipe was conducted by varying working fluids and heat flux. According to supply heat flux, test indicate that R-22 and R-l42b were found lower temperature difference between evaporator and condenser than R-134a and Ethanol. Thermal resistances of R-22 and R-142b were also lower than others. Using R-142b as a working fluid, heat pipe type hydrogen storage tank is tested in absorption and desorption processes.

  • PDF

Catalytic Reduction of Oxidized Mercury to Elemental Form by Transition Metals for Hg CEMS (수은 연속측정시스템에서 전이금속에 의한 산화수은의 원소수은으로의 촉매환원)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.269-276
    • /
    • 2014
  • This study was aimed to develop catalytic system for the dry-based reduction of oxidized mercury ($Hg^{2+}$) to elemental mercury ($Hg^0$) which is one of the most important components comprising mercury continuous emission monitoring system (Hg-CEMS). Based on the standard potential in oxidation-reduction reaction, transition metals including Fe, Cu, Ni and Co were selected as possible candidates for catalyst proceeding spontaneous reduction of $Hg^{2+}$ into $Hg^0$. These transition metal catalysts revealed high activity for reduction of $Hg^{2+}$ into $Hg^0$ in the absence of oxygen in reactant gases. However, their activities were greatly decreased in the presence of oxygen, which was attributed to the transformation of transition metals by oxygen to the corresponding transition metal oxides with less catalytic activity for the reduction of oxidized mercury. Hydrogen supplied to the reactant gases significantly enhanced $Hg^{2+}$ reduction activity even in the presence of oxygen. It might be due to occurrence of combustion reaction between $H_2$ and $O_2$ causing the consumption of $O_2$ at such high reaction temperature at which oxidized mercury reduction reaction took place. Because the system showed high activity for $Hg^{2+}$ reduction to $Hg^0$, which was compatible to that of wet-chemistry technology using $SnCl_2$ solution, the catalytic reduction system of Fe catalyst with the supply of $H_2$ could be employed as a commercial system for the reduction of oxidized mercury to elemental mercury.

A Numerical Investigation of Hydrogen Desorption Reaction for Tritium Delivery from Tritium Storage Based on ZrCo (ZrCo 기반 저장용기로부터 삼중수소 공급을 위한 수소 방출에 대한 수치해석적 연구 (II))

  • Yoo, Haneul;Jo, Arae;Gwak, Geonhui;Yun, Seihun;Chang, Minho;Kang, Hyungoo;Ju, Hyunchul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.36-43
    • /
    • 2013
  • In this paper, a three-dimensional hydrogen desorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 90% hydrogen discharging time. In addition, the performance of thin double-layered annulus bed is evaluated by comparing with a simple cylindrical bed using hydrogen desorption model. This study provides multi-dimensional contours such as temperature and H/M atomic ratio in the metal hydride region. This numerical study provides fundamental understanding during hydrogen desorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen discharging performance. The present three-dimensional hydrogen desorption model is a useful tool for the optimization of bed design and operating conditions.

Characteristics of a Hydrogen Isotope Storage and Accountancy System (수소동위원소 저장 계량 장치 특성 연구)

  • KIM, YEANJIN;JUNG, KWANGJIN;GOO, DAESEO;PARK, JONGCHUL;JEON, MIN-GU;YUN, SEI-HUN;CHUNG, HONGSUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.541-546
    • /
    • 2015
  • Global energy shortage problem is expected to increase driven by strong energy demand growth from developing countries. Nuclear fusion power offers the prospect of an almost infinite source of energy for future generations. Hydrogen isotope storage and delivery system is a important subsystem of a nuclear fusion fuel cycle. Metal hydride is a method of the high-density storage of hydrogen isotope. For the safety storage of hydrogen isotope, depleted uranium (DU) has been widely proposed. But DU needs a safe test because It is a radioactive substance. The authors studied a small-scale DU bed and a medium-scale DU bed for the safety test. And then we made a large-scale DU bed and stored hydrogen isotopes in the bed. Before the hydriding/dehydriding, we tested it's heating and cooling properties and carried out an activation procedure. As a result, Reaction rate of DU-$H_2$ is more rapid than the other metal hydride ZrCo. Through the successful storage result of our large bed, the development possibility of the hydrogen isotope storage technology seems promising.

Effect of Melt-Spinning Process on Hydrogen Storage Properties of Mass-Produced Ti0.85Zr0.13(Fex-V)0.56Mn1.47Ni0.05 Alloy (대량용해 Ti0.85Zr0.13(Fex-V)0.56Mn1.47Ni0.05 수소저장합금의 용융방사공정을 통한 수소저장특성)

  • Kim, Jinho;Han, Kyusung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.367-372
    • /
    • 2013
  • Hydrogen storage as a metal hydride is the most promising alternative because of its relatively large hydrogen storage capacities near room temperature. TiMn2-based C14 Laves phases alloys are one of the promising hydrogen storage materials with easy activation, good hydriding-dehydriding kinetics, high hydrogen storage capacity and relatively low cost. In this work, multi-component, hyper-stoichiometric $Ti_{0.85}Zr_{0.13}(Fe_x-V)_{0.56}Mn_{1.47}Ni_{0.05}$ C14 Laves phase alloys were prepared by a vacuum induction melting for a hydrogen storage tank. Since pure vanadium (V) is quite expensive, the substitution of the V element in these alloys has been tried and some interesting results were achieved by replacing V by commercial ferrovanadium (FeV) raw material. In addition, the melt-spinning process, which was applied to the manufacturing of some of these alloys, could make the plateau slopes much flatter, which resulted in the increase of reversible hydrogen storage capacity. The improvement of sloping properties of melt-spun $Ti_{0.85}Zr_{0.13}(Fe_x-V)_{0.56}Mn_{1.47}Ni_{0.05}$ alloys was mainly attributed to the homogeneity of chemical composition.