• Title/Summary/Keyword: 금속 선재 이격

Search Result 2, Processing Time 0.018 seconds

A Study on the Mechanical Method of Observing Winding Behavior by Charging and Discharging of Type II High Pressure Hydrogen Storage Tank (Type II 고압수소저장용기의 충전과 방출에 의한 권선 거동 관찰의 기계적 방법에 관한 연구)

  • KIM, SEUNGHWAN;HAN, JINMOOK;LEE, SUNGHEE;JUNG, YOUNGGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.2
    • /
    • pp.158-163
    • /
    • 2022
  • The test method on the Type II high-pressure hydrogen storage tanks made of the metal wire hoop winding is a complex and high risk. Also closeup on the tank being test is difficult. In this study, we studied a mechanical test method for a high-pressure hydrogen tanks. This method must be simple, risk-free and possible to observe the change in microscopic behavior of a metal wire on a liner. As the results, it was possible to observe the microscopic behavior on the metal wire by the mechanical test method. Also, a simple and risk-free test was possible compared to the conventional test method for high pressure hydrogen tanks.

An Experimental Study on the Evaluation of EMP Shielding Performance of Concrete Applied with ATMSM Using Zn-Al Alloy Wire (Zn-Al 합금 선재를 이용한 금속용사 공법 적용 콘크리트의 전자파 차폐 성능 평가에 관한 실험적 연구)

  • Choi, Hyun-Jun;Park, Jin-Ho;Min, Tae-Beom;Jang, Hyun-O;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.209-217
    • /
    • 2019
  • EMP (Electromagnetic Pulse) usually means High Power Electromagnetic Wave (HPEM). In the case of the shielding plate against the EMP, there is a possibility of deterioration of the electromagnetic wave shielding performance due to the skill of the constructor, bad construction, deformation of the shielding plate at the connection portion (joint portion). The inefficient use of space due to the separation distance is also pointed out as a problem. Therefore, this study aims to derive the optimum electromagnetic shielding condition by applying ATMSM to concrete as a part of securing electromagnetic wave shielding performance with reflection loss against concrete wall. Experimental parameters included concrete wall thickness and application of Zn-Al ATMSM. For the concrete wall, the wall thickness was 100 to 300mm, which is generally applied, and experimental parameters were set for the application of Zn-Al metal spraying method to evaluate electromagnetic shielding performance. Experimental results showed that as the thickness increases, the electromagnetic shielding performance increases due to the increase of absorption loss. In addition, after the application of Zn-Al ATMSM, the average shielding performance increased by 56.68 dB on average, which is considered to be increased by the reflection loss of the ATMSM. In addition, it is considered that the shielding performance will be better than that when the conductive mixed material and the ATMSM are simultaneously applied.