• Title/Summary/Keyword: 금속 산화물

Search Result 989, Processing Time 0.03 seconds

Physicochemical Property and Antioxidative Activity of Hot-Water Extracts from Enzyme Hydrolysate of Astragalus membranaceus (황기 효소분해물 열수추출액의 이화학적 특성 및 항산화 활성)

  • Kwon, Sang-Chul;Choi, Goo-Hee;Hwang, Jong-Hyun;Lee, Kyung-Haeng
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.3
    • /
    • pp.406-413
    • /
    • 2010
  • To enhance the yield and bioactivity of hot-water extract from herbal medicine, Astragalus membranaceus was hydrolyzed with carbohydrases, such as ClariSEB and Fungamyl. After hot-water extracts were prepared from each hydrolysate (HW-C/F), physicochemical property, antioxidant activity and sensory property were evaluated. The solid content ($^{\circ}Brix$) of HW-C/F was higher than hot-water extract from A. membranaceus no treated enzyme (control). Although pH of HW-C/F was lower than that of the control, the acidity was higher. Lightness of Hunter's color values was increased in HW-C/F whereas redness and yellowness were decreased. The contents of reducing sugar, flavonoid and polyphenol of HW-C/F were higher than the control but the content of ascorbic acid was not different from control. The inhibitory activity of HW-C/F against lipid peroxidation was slightly higher than control, but DPPH radical scavenging, ABTS reducing, metal chelating activities were significantly increased by HW-C/F. The sensory evaluation also revealed that the sensory panelists preferred HW-C/F to that of control. Therefore, hydrolysis by carbohydrases for preparation of hot-water extract from A. membranaceus is one of the good methods to improve antioxidative activity and sensory property of hot-water extract.

Bioassessment of Nanoparticle Toxicity based on Seed Germination and Germination Index of Various Seeds (다양한 씨앗의 발아 및 발아지수에 근거한 나노입자 생물학적 독성평가)

  • Gu, Bon Woo;Lee, Min Kyeung;Shi, Yu Tao;Kong, In Chul
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • This study investigated the effects of six metal oxide nanoparticles (NPs: CuO, NiO, TiO2, Fe2O3, Co3O4, ZnO) on seed germination and germination index (G.I) for five types of seeds: Brassica napus L., Malva verticillata L., Brassica olercea L., Brassica campestris L., Daucus carota L. NPs of CuO, ZnO, NiO show significant toxicity impacts on seed activities [CuO (6-27 mg/L), ZnO (16-86 mg/L), NiO (48-112 mg/L)], while no significant effects were observed at > 1000 mg/L of TiO2, Fe2O3, Co3O4. Tested five types of seed showed different sensitivities on seed germination and root activity, especially on NPs of CuO, ZnO, NiO. Malva verticillata L. seed was highly sensitive to toxic metal oxide NPs and showed following EC50s : CuO 5.5 mg/L, ZnO 16.4 mg/L, NiO 53.4 mg/L. Mostly following order of toxicity was observed, CuO > ZnO > NiO > Fe2O3 ≈ Co3O4 ≈ TiO2, where slightly different toxicity order was observed for carrot, showing CuO > NiO ≈ ZnO > Fe2O3 ≈ Co3O4 ≈ TiO2.

Synthesis of Tridentate-Schiff Base Co(II) Complexes and Their Electrochemical Properties (세자리 Schiff Base Co(Ⅱ) 착물의 합성과 전기화학적 성질)

  • Chae, Hui Nam;Choe, Yong Guk
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.422-431
    • /
    • 1998
  • Tridentate Schiff base ligands such as $SIPH_2,\;SIPCH_2,\;HNIPH_2,\;and\; HNIPCH_2$ were prepared by the reaction of salicylaldehyde and 2-hydroxy-l-naphthaldehyde with 2-aminophenol and 2-amino-p-cresol. The structures and properties of ligands and their Co(II) complexes were investigated by elemental analysis, $^1H$NMR, IR, UV-visible spectra, and thermogravimetric analysis. The molar ratio of Schiff base to the metal of complexes was found to be 1:1. Co(II) complexes were contemplated to be hexa-coordinated octahedral configuration containing three water molecules. The redox process of ligands and complexes in DMSO solution containing 0.1 M TBAP as a supporting electrolyte were investigated by cyclic voltammetry with glassy carbon electrode. The redox process of the tridentate Schiff base ligands was totally irreversible. The redox process of Co(II) complexes were irreversible and one electron processes by two steps in diffusion controlled reaction. The reduction potential of the Co(II) complexes was shifted to the positive direction in the order [Co(Ⅱ)$(HNIPC)(H_2O)_3$]>[Co(Ⅱ)$(HNIP)(H_2O)_3$]>[Co(II)$(SIPC)(H_2O)_3$]>[Co(Ⅱ)$(SIP)(H_2O)_3], and their dependence on ligands were not so high.

  • PDF

Antioxidant Effects and Application as Natural Ingredients of Korean Sanguisorbae officinalis L. (한국산 지유(地楡)(Sanguisorbae officinalis L.)의 항산화 효과 및 천연소재로서의 활용방안)

  • Lee, Jin-Tae;Lee, Soon-Ae;Kwak, Jae-Hoon;Park, Jung-Mi;Lee, Jin-Young;Son, Jun-Ho;An, Bong-Jeun
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.244-250
    • /
    • 2004
  • Biological activities and application of Sanguisorbae officinalis L. were investigated. In the enzymological physiological activities, the electron donating ability (EDA) was 54.9% in 10 ppm and it was over 90% over 50 ppm and SOD-like activity was high as 65.4% in 1000 ppm, it was gradual increased. As inhibitory effect of xanthine oxidase, it was 17.9% in 200 ppm and little low as 36.9% in 500 ppm and inhibitory effect of tyrosinase. As the result of measuring the lipid oxidation, all the concentrations of medical ion treatments had the ability to keep it from acidification and metal ion blocking effects about the lipid oxidation promoting factors ($Fe^{2+}$ and $Cu^{2+}$), $Fe^{2+}$ was better than $Cu^{2+}$ and all concentrations of medical ion treatments was 40% in 50 ppm. When it was applied into normal skin-softener it showed safe effect so that we can expect that as the natural material of cosmetics.

Sulfate Reduction in the Marine Environments: Its Controlling Factors and Relative Significance in Mineralization of Organic Matter (해양환경의 황산염 환원율 조절요인 및 유기물 분해에 있어 황산염 환원의 중요성)

  • 현정호;이홍금;권개경
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.210-224
    • /
    • 2003
  • Sulfate reduction is a microbiological process which occurs ubiquitously in anaerobic marine environment. Sulfate reducing bacteria play a significant role in anaerobic decomposition of organic matter and regeneration of inorganic nutrients which supports the primary production in the water column (i.e., benthic-pelagic coupling) and, in special case, could be responsible for the harmful algal bloom in the coastal marine environment. Summary of the sulfate reduction rates reported in various marine sedimentary environments revealed that supply of organic substrates and presence of various electron acceptors (i.e., $O_2$, NO$_{3}$$^{[-10]}$ , Fe(III) and Mn(IV), etc.) for other aerobic and anaerobic respiration directly affect the sulfate reduction rate and relative significance of sulfate reduction in organic matter mineralization. Significance of temperature, macrophytes and bioturbation is discussed as factors controlling supply of organic substrates and distribution of electron acceptors. Finally, we suggest studies on the anaerobic microbiological processes associated with biogeochemical element cycles in the coastal environments of Korea where massive operation of organic enriched fish cage farm, frequent occurrence of toxic algal bloom and hypoxia and conservation of tidal flat are of major environmental issues.

Synthesis of Transition Metal Cu(II) Complexes and Their Electrochemical Properties (Cu(II) 전이금속 착물의 합성과 전기화학적 성질에 관한 연구)

  • Chae, Hee-nam;Choi, Yong-kook
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.719-725
    • /
    • 1998
  • Tridentate Schiff base ligands were prepared by the reactions of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with 2-aminophenol and 2-amino-p-cresol. And then Cu(II) complexes of those ligands were synthesized. The structures and properties of ligands and their complexes were studied by elemental analysis, $^1H$-NMR, IR, UV-visible spectra, and thermogravimetric analysis. The mole ratio of Schiff base to the metal of complexes was found to be 1:1. Cu(II) complexes were contemplated to be four-coordinated square planar configuration containing one water molecule. The redox process of ligands and complexes in DMSO solution containing 0.1 M TBAP as a supporting electrolyte was investigated by cyclic voltammetry and differential pulse voltammetry with glassy carbon electrode. The redox process of the tridentate Schiff base ligands was totally irreversible. The redox process of Cu(II) complexes was quasi-reversible and diffusion-controlled as one electron by one step process Cu(II)/Cu(I). The reduction potentials of the Cu(II) complexes shifted in the positive direction in the order of [Cu(II)(HNIPC)($H_2O$)]>[Cu(II)(HNIP)($H_2O$)]>[Cu(II)(SIP)($H_2O$)]>[Cu(II)(SIPC)($H_2O$)].

  • PDF

Effects of Activator on Rubber Characteristics for Gasket to Lithium Ion Battery (리튬 이온 전지용 개스킷 고무 물성에 미치는 가교조제의 영향)

  • Kang, Dong-gug;Kim, Hye-young;Kang, Young-im;Hur, Byung-ki;Seo, Kwan-ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.395-399
    • /
    • 2011
  • Material of the gasket for lithium ion battery requires the chemical resistance, the electrical insulting property, the compression set, the anti-contamination level and the low temperature resistance. We compounded ethylene propylene diene monomer (EPDM), which showed widely different solubility parameter index, with adjusting the amount of metal oxide as an activator. We did long-term test and compression set against an electrolyte with consideration for operating conditions in lithium-ion battery. In these tests, we checked the physical, chemical characteristics and the effect to lithium ion battery with different kinds of activators. In case of rubber with ZnO as an activator, through 1000 h depositing test in propylene carbonate which is one of representative solvents, we could get the satisfying characteristics and result. However, $Zn^{2+}$ had eluted in the ion elution test. So, ZnO should be limited in EPDM compound for the gasket material in lithium-ion battery.

Genetic Environments of Dongwon Au-Ag-bearing Hydrothermal Vein Deposit (동원 함 금-은 열수 맥상광상의 생성환경)

  • Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.753-765
    • /
    • 2021
  • The Dongwon Au-Ag deposit is located within the Paleozoic Taebaeksan province, Okcheon belt. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz veins; stage II, barren carbonate veins) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages(early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite with minor magnetite, pyrrhotite and arsenopyrite; middle, characterized by introduction of electrum and base-metal sulfides with minor sulfosalts; late, marked by argentite, Cu-As (and/or Sb) and Ag-Sb sulfosalts with base-metal sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥430℃) and later lower temperatures (≤230℃) from fluids with salinities between 6.0 to 0.4 wt. percent equiv. NaCl. The relationship of salinity and homogenization temperature suggest that ore mineralization at Dongwon was deposited mainly due to fluid boiling, cooling and dilution via influx of cooler, more dilute meteoric waters. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Dongwon hydrothermal system with increasing paragenetic time. The Dongwon deposit may represents a Korean-type and/or Au-Ag type mesothermal/epithermal gold-silver deposit.

A Study on the Resistve Switching Characteristic of Parallel Memristive Circuit of Lithium Ion Based Memristor and Capacitor (리튬 이온 기반 멤리스터 커패시터 병렬 구조의 저항변화 특성 연구)

  • Kang, Seung Hyun;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.41-45
    • /
    • 2021
  • In this study, in order to secure the high reliability of the memristor, we adopted a patterned lithium filament seed layer as the main agent for resistive switching (RS) characteristic on the 30 nm thick ZrO2 thin film at the device manufacturing stage. Lithium filament seed layer with a thickness of 5 nm and an area of 5 ㎛ × 5 ㎛ were formed on the ZrO2 thin film, and various electrode areas were applied to investigate the effect of capacitance on filament type memristive behavior in the parallel memristive circuit of memristor and capacitor. The RS characteristics were measured in the samples before and after 250℃ post-annealing for lithium metal diffusion. In the case of conductive filaments formed by thermal diffusion (post-annealed sample), it was not available to control the filament by applying voltage, and the other hand, the as-deposited sample showed the reversible RS characteristics by the formation and rupture of filaments. Finally, via the comparison of the RS characteristics according to the electrode area, it was confirmed that capacitance is an important factor for the formation and rupture of filaments.

Synthesis of Ni-MWCNT by pulsed laser ablation and its water splitting properties (레이저 어블레이션 공정에 의한 Ni-MWCNT 합성 및 물분해 특성)

  • Cho, Kyoungwon;Chae, Hui Ra;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.77-82
    • /
    • 2022
  • Recently, research on the development of low-cost/high-efficiency water electrolysis catalysts to replace noble metal catalysts is being actively conducted. Since overvoltage reduces the overall efficiency of the water splitting device, lowering the overvoltage of the oxygen evolution reaction (OER) is the most important task in order to generate hydrogen more efficiently. Currently, noble metal catalysts show excellent characteristics in OER performance, but they are experiencing great difficulties in commercialization due to their high price and efficiency limitations due to low reactivity. In this study, a water electrolysis catalyst Ni-MWCNT was prepared by successfully doping Ni into the MWCNTs structure through the pulsed laser ablation in liquid (PLAL) process. High resolution-transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS) were performed for the structure and chemical composition of the synthesized Ni-MWCNT. Catalytic oxygen evolution reaction evaluation was performed by linear sweep voltammetry (LSV) overvoltage characteristics, Tafel slope, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and Chronoamperometry (CA) was used for measurement.