• Title/Summary/Keyword: 금속섬유

Search Result 474, Processing Time 0.023 seconds

Influences of Fiber Laminate Orientation on the Behavior of Fatigue Delamination in GLARE (GLARE 의 섬유층 배향이 피로층간분리 거동에 미치는 영향)

  • 황진우;송삼홍;김철웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.479-482
    • /
    • 2004
  • The behavior of fatigue delamination in a GLARE(Glass Fiber Reinforced Metal Laminates) under fatigue loading conditions investigated. The behavior of fatigue delamination was examined basing on investigation of the crack and delamination using a SAM (Scanning Acoustic Microscope). The crack and delamination behavior on the relationship among a-N, SAM images and crack length-delamination length were considered. The test results indicated the features of different fatigue delamination and crack growth according to each fiber orientation angle and also obtained to more increase delamination than crack through the relationship between crack length and delamination length in GLARE.

  • PDF

Failure Mechanism of Metal Matrix Composites Subject to Transverse Loading (횡방향 하중을 받는 금속모재 복합재료의 파손구조)

  • Ham, Jong-Ho;Lee, Hyeong-Il;Jo, Jong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1456-1469
    • /
    • 2000
  • Mechanical behaviors of uniaxially fiber-reinforced metal matrix composites under transverse loading conditions were studied at room and elevated temperatures. A mono-filament composite was selecte d as a representative analysis model with perfectly bonded fiber/matrix interface assumption. The elastic-plastic and visco-plastic models were investigated by both theoretical and numerical methods. The product of triaxiality factor and effective strain as well as stress components and strain energy was obtained as a function of location to estimate the failure sites in fiber-reinforced metal matrix composite. Results showed that fiber/ matrix interfacial debond plays a key role for local failure at the room temperature, while void creation and growth in addition to the interfacial debond are major concerns at the elevated temperature. It was also shown that there would be an optimal diameter of fiber for the strong fiber-reinforced metal matrix composite.

A Study on the ballistic impact resistance and dynamic failure behavior of aramid FRMLs by high velocity impact (고속충격에 의한 아라미드 섬유강화 금속적층재의 방탄성능 및 동적파손거동에 관한 연구)

  • 손세원;이두성;김동훈;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.527-532
    • /
    • 2000
  • The armor composite material targets such as aramid FRMLs with different type and ply number of face material and different type of back-up material, were studied to determine ballistic impact resistance and dynamic failure behavior during ballistic impact. Ballistic impact resistance is determined by $\textrm{V}_{50}$ ballistic limit, a statical velocity with 50% probability for complete penetration, test method. Also dynamic failure behaviors are respectfully observed that result from $\textrm{V}_{50}$ tests. $\textrm{V}_{50}$ tests with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during high velocity impact tests. As a result, ballistic impact resistance of anodized Al 5052-H34 alloy(2 ply) is better than that of anodized Al 5052-H34 alloy(1 ply), but Titanium alloy showed the similar ballistic impact resistance. In the face material, ballistic impact resistance of titanium alloy is better than that of anodized Al 5052-H34 alloy. In the back-up material, ballistic impact resistance of T750 type aramid fiber is better than that of CT709 type aramid fiber.

  • PDF

Synthesis of Multi-Walled Carbon Nanotubes and Nanofibers on a Catalytic Metal Substrate Using an Ethylene Inverse Diffusion Flame as a Heat Source (에틸렌 역확산화염을 열원으로 사용하여 촉매금속 기판 상에 합성한 탄소나노튜브와 탄소나노섬유)

  • Lee, Gyo-Woo;Jurng, Jong-Soo;Kang, Kyung-Tae;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1081-1092
    • /
    • 2004
  • The synthesis of Ni-catalyzed multi-walled carbon nanotubes and nanofibers on a catalytic metal substrate, using an ethylene fueled inverse diffusion flame as a heat source, was investigated. When the gas temperature was varied from 1,400K to 900K, approximately, carbon nanotubes with diameters of 20∼60nm were formed on the substrate. In the regions where the gas temperature was higher than 1,400K or lower than 900K, iron nanorods or carbon nanofibers were synthesized, respectively. Based on the quantitative analyses of large amount of SEM and TEM images, the nanotubes formed closer to the flame had a tendency of having larger diameters. HR-TEM images and Raman spectra revealed that carbon nanotubes synthesized had multi-walled structures with some defective graphite layers at the wall. Based on the graphite mode of the Raman spectra, it was believed that the optimal synthesis could be obtained as the substrate was positioned at between 5.5mm and 5.0mm, from the flame axis.

Flame Synthesis of Carbon Nanofibers using SUS304 Substrates (촉매금속 기판을 사용한 탄소나노섬유의 연소합성)

  • Lee, Gyo-Woo;Jurng, Jong-Soo;Hwang, JungHo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1378-1383
    • /
    • 2003
  • Synthesis of carbon nanofibers on a metal substrate by an ethylene fueled inverse diffusion flame was illustrated. Stainless steel plates were used for the catalytic metal substrate. The effects of radial distance and residence time of the substrate were investigated. The role of hydrocarbon composition in the fuel was also viewed. Nanofibers with a diameter range of 30-70 nm were found on the substrate. The carbon nanofibers were formed and grown in the region from 4 to 5.5 mm from the central axis of a flame outside of the visible flame front in the radial direction. The minimum residence time required for the formation of carbon nanofibers were about 20 seconds, and over 60 seconds were required for the full-scale growth. The characteristic time of the formation of carbon nanofibers was much shorter than that of the substrate temperature growth. In this study, the variation in hydrocarbon composition had no significant effect on the formation and growth of the carbon nanofibers.

  • PDF

Damage Behavior of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions (집중하중을 받는 일방향 섬유 금속 적층판의 손상 거동)

  • Nam, H.W.;Kim, Y.H.;Jung, S.W.;Jung, C.K.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.407-412
    • /
    • 2001
  • In this research, damage behavior of singly oriented ply (SOP) fiber metal laminate (FML) subject to concentrated load was studied. The static indentation tests were conducted to study fiber orientation effect on damage behavior of FML. During the static indentation tests, Acoustic Emission technique (AE) was adopted to study damage characteristics of FML. AE signals were obtained by using AE sensor with 150kHz resonance frequency and the signals were compared with indentation curves of FML. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. Cumulative AE counts were well predicted crack initiation and crack propagation and AE amplitude were useful for prediction of damage failure mode. During the matrix cracking, fiber debonding and fiber breakage, AE amplitude has $45{\sim}60dB,\;60{\sim}80dB\;and\;90{\sim}100dB$, respectively.

  • PDF

Fatigue Crack and Delamination Behavior in the Composite Material Containing n Saw-cut and Circular Hole (I) - Aramid Fiber Reinforced Metal Laminates - (소컷 및 원공 주위의 피로균열 형태변화와 층간분리거동 (I) - 아라미드섬유 강화 금속적층재의 경우 -)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.58-65
    • /
    • 2003
  • The aramid fiber reinforced metal laminates(AFRMLs) used for the wing part fair flight suffer the cyclic bending moment of variable amplitude during service. The fatigue crack propagation and delamination behavior in AFRMLs containing a saw-cut and circular hole was investigated using the average stress criterion(ASC) model. Mechanical tests were carried out using the cyclic bending moment of 4.9 N . m and delamination was observed by ultrasonic C-scan images. In case of AFRMLs containing a saw-cut fatigue crack propagated in aluminum matrix, inducing delamination. However, in case of AFRMLs containing a circular hole, delamination formed with two types under cyclic bending moment of 4.9 N . m. First, delamination formed along the fatigue crack in aluminum matrix. Second, delamination formed without any fatigue crack around the circular hole. Therefore, delamination was formed depending on the stress distribution near the circular hole.

Low Cycle Fatigue Life Behavior of GFRP Coated Aluminum Plates According to Layup Number (적층수에 따른 GFRP 피막 Al 평활재의 저주기 피로수명 평가)

  • Myung, Nohjun;Seo, Jihye;Lee, Eunkyun;Choi, Nak-Sam
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.332-339
    • /
    • 2018
  • Fiber metal hybrid laminate (FML) can be used as an economic material with superior mechanical properties and light weight than conventional metal by bonding of metal and FRP. However, there are disadvantages that it is difficult to predict fracture behavior because of the large difference in properties depending on the type of fiber and lamination conditions. In this paper, we study the failure behavior of hybrid materials with laminated glass fiber reinforced plastics (GFRP, GEP118, woven type) in Al6061-T6 alloy. The Al alloys were coated with GFRP 1, 3, and 5 layers, and fracture behavior was analyzed by using a static test and a low cycle fatigue test. In the low cycle fatigue test, strain - life analysis and the total strain energy density method were used to analyze and predict the fatigue life. The Al alloy did not have tensile properties strengthening effect due to the GFRP coating. The fatigue hysteresis geometry followed the behavior of the Al alloy, the base material, regardless of the GFRP coating and number of coatings. As a result of the low cycle fatigue test, the fatigue strength was increased by the coating of GFRP, but it did not increase proportionally with the number of GFRP layers.

Non-Destructive Scientific Analysis of the Gold Fabric Excavated of Cheongsong Shim's Grave (청송심씨 묘에서 출토된 금직물의 비파괴 과학적 분석)

  • Lee, Hwang-Jo;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.38 no.3
    • /
    • pp.243-253
    • /
    • 2022
  • Using non-destructive analytical methods, we identified the material characteristics of two gold fabric artifacts excavated from the Cheongsong Sim clan (Bugeum Wonsam, Jikgeum Chima), including the artifact condition, fiber type, surface contamination, and metallic threads. We found that the artifacts were buried and had turned brown; thus, we were unable to determine their original color. The fiber type was determined to be silk from cocoons, based on scanning electron microscopy, Fourier transform infrared (FT-IR) analyses of Amide I, II, III, and IV peaks, and color reactions Further, the FT-IR and X-ray fluorescence (XRF) analyses identified the white and black stains as natural resin hydrolyzed substances, such as lipids and proteins, that occurred as microbial decomposition due to body decay. Finally, the XRF analyses identified the thin gold layer of the metallic yarn as gold (Au). According to the FT-IR data and the color reaction to the metallic yarn medium, the adhesive component of the medium was a product of-Amides I, II, III, and 3000 cm-1 within Amides A and B (an animal type), respectively. Thus, the medium was identified as Hanji (Korean paper), which is made from domestically produced Broussonetia kazinoki fibers.

Effects of Fiber Orientations and Hybrid Ratios on Lubricant Tribological Characteristics of $Al_2O_{3f}/SiC_p$ Reinforced MMCs ($Al_2O_{3f}/SiC_p$ 금속복합재료의 섬유방향과 혼합비가 윤활마모특성에 미치는 영향)

  • Wang, Yi-Qi;Song, Jung-Il
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.15-23
    • /
    • 2009
  • The lubricant tribological characteristics of $Al_2O_3$ fiber and SiC particle hybrid metal matrix composites (MMCs) fabricated by squeeze casting method was investigated using a pin-on-disk wear tester. The wear tests of the MMCs were performed according to fiber/particle hybrid ratio in the planar-random (PR) and normal (N) orientations sliding against a counter steel disk at a fixed speed and $25\;kg_f$ loading under different sliding distances and temperatures. The test results showed that the wear behavior of MMCs varied with fiber orientation and hybrid ratio. At room temperature, the lubricant wear behavior of F20P0 unhybrid PR-MMCs was superior to that of N-MMCs while the hybrid composites exhibited the reverse lubricant wear behavior. It was also revealed that the wear resistance of PR-MMCs was superior to that of the N-MMCs due to the joint action of reinforcements and lubricant film between the friction surfaces at an elevated temperature of $100^{\circ}C$ for both fiber only and hybrid cases. In case of $150^{\circ}C$, although the trend of weight loss was similar to that of others, the wear resistance of PR-MMCs was better than that of N-MMCs for hybrid MMCs.