• Title/Summary/Keyword: 금속리싸이클링

Search Result 387, Processing Time 0.023 seconds

The Optimization of Hydrometallurgical Process for Recovery of Zinc from Electric Arc Furnace Dust (Part I : leaching process) (습식산화법을 이용한 제강분진 내 아연회수를 위한 최적조건 도출에 관한 연구(Part I; 침출공정))

  • Moon, Dea-Hyun;Ahn, Sang-Woo;Kim, Han-lae;Kim, Ji-Tae;Chang, Soon-Woong
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.27-33
    • /
    • 2015
  • EAFD (Electric Arc Furnace Dust) is considered as pernicious pollutant, assigned hazardous waste. Since this dust is a by-product of industry, it contains valuable metals such as Fe, Zn, Ni, Cu which can be turned into resources by recycling process. In this study, hydrometallurgical process was applied to recover Zn from Electric Arc Furnace Dusts. The result showed 95% Zn recovery at 3M $H_2SO_4$, Solids/Liquid ratio 1:2 and aeration of 1.8L/min for 2hr. However there was 80% Zn recovery at lower $H_2SO_4$ concentration apply for pilot scale plant.

Behavior of Cobalt Extraction from Cobalt Sulphate solution using Supercritical 2 (황산코발트용액(溶液)으로부터 초임계(超臨界CO2에 의한 코발트 추출거동(抽出擧動))

  • Shin, Shun-Myung;Joo, Sung-Ho;Sohn, Jeong-Soo;Kang, Jin-Gu
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.78-82
    • /
    • 2011
  • Supercritical $CO_2$($scCO_2$) extraction has a great possibility to be a new process to recover metal and to replace the existing leaching/solvent extraction processes. The cobalt extraction was carried out using $scCO_2$ from cobalt sulphate solution. The bis (2,4,4-trimethylpentyl) phosphinic acid and diethylamine ligands were used to extract cobalt ion in $scCO_2$. The recommended method consists of $scCO_2$/extractants complexation process and metal extraction process at 60, 200bar. Experimental results showed that the extraction efficiency of Co was increased by 16-99% with increasing the ligand amount.

Technical Trends in the Patents and Papers for the Recycling of Organic Residues from Waste Printed Circuit Boards (특허(特許)와 논문(論文)으로 본 폐(廢)PCB 유기계(有機界) 잔유물(殘留物) 재활용(再活用) 기술(技術) 동향(動向))

  • Lee, Dai-Soo;Shin, Sera;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.71-77
    • /
    • 2013
  • Electronic products such as appliances, computers, and cellular phones have printed circuit boards (PCBs) in common and the PCBs in the waste electronic products contain valuable metals and organic resins. In Korea, recovery and recycling of the organic resins as well as the valuable metallics from the wastes are required indeed as the most of resources are being imported from abroad. In this article, the patents and papers for the recycling of organic residues from the waste PCBs were collected and analyzed. The open patents of USA (US), European Union (EP), Japan (JP), and Korea (KR) and SCI journals from 1979 to 2012 were investigated. The patents and journals were collected using key-words and filtered by the definition of the technology. The patents and journals were analyzed by the years, countries, companies, and technologies and the technical trends were discussed in this paper. It is showed sluggish relatively activity of published papers and patent applications for polymer manufacturing technology in local and abroad.

Solvent Extraction Separation of Nd and Pr from Chloride Solution using Organophosphorus Acid Extractants (염산용액에서 유기인산계 추출제에 의한 Nd와 Pr의 분리추출)

  • Park, Joo-Ho;Jeon, Ho-Seok;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.37-45
    • /
    • 2014
  • Solvent extraction experiments have been performed to separate Nd and Pr from chloride leaching solution of monazite sand using single Cyanex272 and mixed extractants as PC88A+Cyanex272 and PC88A+TBP. For this purpose, the effect of the concentration of extractants on the extraction and separation of the two metals were studied by varying the pH of aqueous solution. In the experimental ranges conducted in this study, the distribution coefficients of Nd were higher than those of Pr. In Cyanex272 system, our results indicated that concentration of extractant and initial pH did not affect distribution coefficients, but separation factor was increased with increasing initial pH. In binary extractant system, distribution coefficients were lower than those of single PC88A system, whereas separation factor was similar in both mixed and single extractant system.

Electrowinning of Tin from Acidic Sulfate Effluents Using a Cyclone Electrolytic Cell (황산용액에서 사이클론 전해조를 이용한 주석의 전해채취)

  • Kang, Myeong-Sik;Cho, Yeon-Chul;Ahn, Jae-Woo;Shin, Gi-Wung;Kang, Yong-Ho
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.25-32
    • /
    • 2016
  • A electrodeposion behavior of tin was tested to recovery of tin metal from sulfate solution using a newly designed cyclone type electrolyzer. Parameters, such as flow rate, current density, tin and sulfuric acid concentration in the electrolyte were investigated. From the experimental results, a powered tin metal below $100{\mu}m$ can be obtained. As the increase of flow rate, current density and sulfuric acid concentration in the electrolyte, electrodeposition ratio of tin and current efficiency were increased. The electrodeposition ratio of tin was increased with the decrease of tin concentration in the electrolyte, but the current efficiency was decreased.

Trend on the Recycling Technologies for waste Printed Circuit Boards Waste by the Patent and Paper Analysis (특허(特許)와 논문(論文)으로 본 폐인쇄회로기판(廢印刷回路基板) 재활용(再活用) 기술(技術) 동향(動向))

  • Jeong, Jin-Ki;Shin, Do-Yun;Kim, Byung-Su;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.21 no.3
    • /
    • pp.56-64
    • /
    • 2012
  • It is generally well known that PCB (Printed Circuit Board) is an electric component assembled by various metals mixed with plastics and ceramics. Accordingly, it is very important to extract metallic components from used PCBs from the point of view of recycling of used resources as well as an environmental protection. In this paper, patents and paper on the recycling technologies of PCB were analyzed. The range of search was limited in the open patents of USA (US), European Union (EP), Japan (JP), Korea (KR) and SCI journals from 1980 to 2011. Patents and journals were collected using key-words searching and filtered by filtering criteria. The trends of the patents and journals was analyzed by the years, countries, companies, and technologies.

Separation of Heavy Metals from Electroplating Waste Water by Solvent Extraction (용매추출법에 의한 광금폐수중 중금속의 분리에 관한 연구)

  • KIM Sung Gyu;LEE Hwa Yeung;OH Jong Kee
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2003
  • A study on the separation of heavy metals such as iron, copper, zinc and nickel from electroplating waste water has been investigated. The results showed that the PC-88A was more effective extractant for the extraction of zinc and the efficiency of zinc was to be about 100% at pH 2.5. And copper and nickel were extracted about 100% at pH 2 and more than 90% at pH 4~5 with LIX 84, respectively. On the other hand, in the case of solvent extraction of electroplating waste water(Acid-Alkali type) containing heavy metals, the ferric ion was first extracted at pH 2∼2.5 with 20% Naphthenic acid or 10% Versatic acid-10. And then, copper and zinc were extracted at pH 2 with 3% LIX 84 and at pH 2.5∼3 with 20% PC-88A respectively, remaining nickel in the raffinate. In this manner, the heavy metals in electroplating waste water could be effectively separated with solvent extraction method.

Recovery of Cu and Sn from the Bioleaching Solution of Electronic Scrap (전자(電子)스크랩의 미생물(微生物) 침출액(浸出液)으로부터 구리 및 주석의 회수(回收)에 관한 연구(硏究))

  • Ahn, Jae-Woo;Kim, Meong-Woon;Jeong, Jin-Ki;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.15 no.6 s.74
    • /
    • pp.41-47
    • /
    • 2006
  • A study for recovering of copper and lead from electronic scraps has been carried out using a combination of bioleaching and solvent extraction. It was found that the citric acid generated by Aspergillus niger could be an imporant leaching agent acting in the solubilization of copper, iron, lead and tin from the electronic scrap. Copper could be selectively extracted by 10% LIX84 from the leaching solution and it recoved 99.9% of metallic copper by electrowinning process. Tin and iron were extracted from the remaining solution by 10% Alamine336 and stripped by NaCl solution. Finally, tin could be recovered as a metallic precipitates from the mixed solution of tin and iron by cementation with iron powder.

Fabrication of High Purity Ga-containing Solution using MOCVD dust (유기금속화학증착 분진(MOCVD dust)을 이용한 갈륨 함유 고순도 수용액 제조 연구)

  • Lee, Duk-Hee;Yoon, Jin-Ho;Park, Kyung-Soo;Hong, Myung-Hwan;Lee, Chan-Gi;Park, Jeung-Jin
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.50-55
    • /
    • 2015
  • In this study, we have investigated solvent extraction of Ga and recovery of high pure Ga solution from MOCVD dust for manufacturing of LED chip. Effect of extractan, concentration of extractant were examined for choosing the more effective extractant and high pure Ga solution was fabricated by multi-stage extraction/stripping process. For extraction/separation of Ga based on the analysis of raw-material in previous study, 3 different extractants PC 99A, DP-8R, Cyanex 272 has been investigated and the extraction efficiency of 1.5 M Cyanex 272 was 43.8%. It was conformed that extraction efficiency of Ga was 83% in multi-stage extraction and 5N high purity Ga stripping solution without impurities also obtained.

Recovery of Tin and Copper from Waste Solder Stripper by Oxalate Precipitation (옥살레이트 침전법에 의한 폐솔더 박리액에서 주석 및 구리의 회수)

  • Ryu, Seong-Hyung;Ahn, Jae-Woo;Ahn, Hyo-Jin;Kim, Tae-Young
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.37-43
    • /
    • 2014
  • A study has been made on the recovery of tin and copper from waste solder stripper by oxalate precipitation. With the increasing of the oxalic acid addition, tin was precipitated effectively and removed above 99.5% of tin when the oxalic acid, in an amount 1.0-1.5 times the stoichometric requirement, was added. But, in this case, only 2.0% of copper was precipitated and lead, iron were not precipitated. So, tin was selectively removed from the waste solution. With the increasing of the reaction temperature, the removal percentage of tin was increased and maximum value at arounf $60^{\circ}C$ and decreased with increase in the temperature any more. After filtering the precipitate and drying in oven, $SnO_2$ was obtained from the precipitate. After removal of tin in stripping solution, above 91% of copper was selectively removed by Cu-oxalate by addition of oxalic acid.