• Title/Summary/Keyword: 금속리싸이클링

Search Result 387, Processing Time 0.027 seconds

Treatment of Metal Wastes with Manganese Nodules (망간단괴 제연 시 금속계 폐자원의 처리)

  • Park Kyung-Ho;Nam Chul-Woo;Kim Hong-In;Park Jin-Tae
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.17-21
    • /
    • 2005
  • Deep-sea Manganese nodules was treated with reduction-smelting process with adding the spent Ni-Cd battery or the cobalt contained spent catalyst for recovery of nickel and cobalt metals. The nickel in the spent Ni-Cd battery could be recovered by adding $5\%$ coke as a reducing agent regardless of the amount of battery added. However, to recover cobalt from the spent catalyst, it is require to add more coke for reduction of cobalt oxide in the catalyst. The treatment of metal wastes with manganese nodules can contribute to lower the cost for the processing of nodules and to facilitate the recycling of metal wastes.

Solvent Extraction of Zr(IV) and Hf(IV) from Sulfuric Acid Solutions by Acidic Extractants and Their Mixtures with TBP (황산용액에서 양이온계 추출제 및 TBP와의 혼합추출제에 의한 지르코늄(IV)과 하프늄(IV)의 용매추출)

  • Wang, Ling Yun;Lee, Man Seung
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.3-9
    • /
    • 2016
  • Separation of Zr(IV) and Hf(IV) from sulfuric acid solutions was investigated by extraction with several acidic extractants such as Versatic acid, LIX 63, and Cyanex 301. From strong sulfuric acid solutions, the separation of Zr(IV) and Hf(IV) by Versatic acid and LIX 63 was not possible, while selective extraction of Hf(IV) over Zr(IV) was obtained with Cyanex 301. However, the extraction percentage of the two metals was much lower compared to that by D2EHPA. Mixing of TBP with Cyanex 301 and D2EHPA led to negative effect on the extraction and separation of the two metal ions. The difference in the extraction reaction and separation selectivity between HCl, $HNO_3$ and $H_2SO_4$ media with each extractant was discussed.

Evaluation of Some Rare Metals and Rare Earth Metals Contained in Coal Ash of Coal-fired Power Plants in Korea (국내 석탄화력발전소 석탄회 중 희유금속 가치 평가)

  • Park, Seok-Un;Kim, Jae-Kwan;Seo, Yeon-Seok;Hong, Jun-Seok;Lee, Hyoung-Beom;Lee, Hyun-Dong
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.67-75
    • /
    • 2015
  • The content distributions of some rare metals and rare earthe metals in coal ash (fly ash, bottom ash and pond ash) and leachate from coal-fired power plants were investigated. In case of Yttrium (Y) and Neodymium (Nd) which were strategic critical elements, their contents were ranged from about 23 ~ 75 mg/kg and it is shown they are worth to be developed for the recovery and separation method. Considering the annual amount of fly ash and bottom ash and pond ash, coal-fired power plants have great value of about 1,670 billion KRW and it is regards they are worthy as urban mines.

Strategy of Critical Materials Management in the World (세계(世界) Critical materials 관리(管理)를 위한 전략(戰略))

  • Kim, Yu Jeong
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.3-12
    • /
    • 2013
  • It is necessary to manage risk of metals which are has rigid supply structures and expected demand expansion, considering to industry structure and resource securing capacity of each country. Countries conducted various criticality analyses and selected mainly rare metals as critical materials(or Critical metals or Critical raw materials). This study examined cases of metals risk evaluation and management which are based on technology changes and imbalance supply-demand. EU and U.S.A evaluated risk on metals needed as supply expansion of renewable energy. Japan forecasted demand of rare metals needed in Japan's growth engine industry. U.K analyzed criticality of metals, considering environmental burden occurred from mining to refining. Critical materials has features such as weak price signal, inelastic supply structure, demand volatility in technology change.

Solvent Extraction Separation of Nd and Pr from Chloride Solution using PC88A and D2EHPA (염산용액(鹽酸溶液)에서 PC88A와 D2EHPA에 의한 Nd와 Pr의 분리추출(分離抽出))

  • Park, Joo-Ho;Jeon, Ho-Seok;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.35-42
    • /
    • 2013
  • Solvent extraction experiments have been performed to investigate an optimum condition to separate Nd and Pr from chloride solutions using PC88A and D2EHPA. In our experimental ranges, the distribution coefficients of Nd were higher than those of Pr. In both of PC88A and D2EHPA extractant system, our results indicated that the increase in concentration ratio of extractant to metal had a great effect on the extraction and separation of the two metals. In extraction with saponified D2EHPA, the initial pH of the aqueous solution and saponification degree had some effect on the extraction of the two metals but little effect on the separation factor.

Bioleaching of valuable metals from electronic scrap using fungi(Aspergillus niger) as a microorganism (곰팡이균(Aspergillus niger)을 이용(利用)한 전자스크랩중 유가금속(有價金屬)의 미생물(微生物) 침출(浸出) 연구(硏究))

  • Ahn, Jae-Woo;Jeong, Jin-Ki;Lee, Jae-Chun;Kim, Dong-Gin
    • Resources Recycling
    • /
    • v.14 no.5 s.67
    • /
    • pp.24-31
    • /
    • 2005
  • In order to recover valuable metals from fine-grained electronic waste, bioleaching of Cu, Zn, Al, Co, Ni, Fe, Sn and Pb were carried out using Aspergillus niger as a leaching microorganism in a shaking flask. Aspergillus niger was able to grow in the presence of electronic scrap. The formation of organic acids(citric and oxalic acid) from Aspergillus niger caused the mobilization of metals from waste electronic scrap. In a preliminary study, in order to obtain the data on the leaching of Cu, Zn, Al, Fe, Co and Ni from electronic scrap, chemical leaching using organic acid(Citric acid and Oxalic acid) was accomplished. At the electronic scrap concentration of 50 g/L, Aspergillus niger were able to leach more than 95% of the available Cu, Co. But Al, Zn, Pb and Sn were leached about 15-35%. Ni and Fe were detected in the leachate less than 10%.

Recovery of Precious Metals from Spent Catalyst Generated in Domestic Petrochemical Industry (한내 석유화학 폐촉매로부터 귀금속의 회수 연구)

  • 김준수;박형규;이후인;김성돈;김철주
    • Resources Recycling
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • Recovery of precious metal values from petrochemical spent catalyst is important from the viewpoint of environmental protection and resource recycling. Two types of spent catalysts were used in this study. One used in the manufacture of ethylene contains 0.3% Pd in the alumina substrate. The other used in oil refining contains 0.3% Pt and 0.3% Re. Both spent catalysts are roasted to remove volatile matters as carbon and sulfur. Then, metallic Pd powder from Pd spent catalyst is obtained in the course of grinding, hydrochloric acid or aqua regia leaching and cementation with iron. For the recovery of Pt and Re from Pt-Re spent catalyst, Pt and Re are leached with either HCI or aqua regia, first. Metallic Pt powder is recovered from the leach solution by cementation with Fe powder. Re in sulfide form is precipitated by the addition of sodium sulfide to the solution obtained after Pt recovery. It is found that 6N HCI can be successfully used as leaching agent for both types of spent catalyst. 6N HCI is considered to be better than aqua regia in consideration of reagent and equipment cost.

  • PDF

Recovery of Acids and Valuable Metals from Stainless-Steel Pickling Acids (스텐레스 산세폐액으로부터 산 및 유가금속의 회수)

  • 김성규;이화영;오종기;이동휘
    • Resources Recycling
    • /
    • v.1 no.1
    • /
    • pp.23-28
    • /
    • 1992
  • The process for recovery of acids and valuable metals such as nickel and chromium from the stainless-steel pickling acids has been developed vased on the use of solvent extraction technique. Until now, several processes for the treatment of waste acids were already developed in such countries as Japan, Swden and Canada. Those methods are, however, forcussed on the recovery of acids from them discarding the metals included in them as the hydroxides sludge. In the present work, the recovery of nickel and chromium in addition to nitric acid and hydrofluoric acid has been aimed so as to recycle them to the stainless-steel pickling lines and also to minimize the amount of sludge generated during the treatment of waste acids. The establishment of the process to recover the acids has been carried out based on the solvent extraction with TBP. The iron was eliminated from the waste solutions by precipitating in the form of hydroxide through the adjustment of pH with calcined limestone and the selective extration of chromium and nickel from the resultant solutions has been conducted by using D2EHPA as extractant.

  • PDF

A basic study on the recovery of Ni, Cu, Fe, Zn ions from wastewater with the spent catalyst (폐산화철촉매에 의한 폐수중 Ni, Cu, Fe, Zn이온 회수에 관한 기초연구)

  • Lee Hyo Sook;Oh Yeung Soon;Lee Woo Chul
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.3-8
    • /
    • 2004
  • A basic study on the recovery of heavy metals such as Zn, Ni, Cu and Fe ions from wastewater was carried out with the spent iron oxide catalyst, which was used in the Styrene Monomer(SM) production company. The heavy metals could be recovered more than 98% with the spent iron oxide catalyst. The alkaline components of the spent catalyst could be precipitated the metal ions of the wastewater as metal hydroxides at the higher pH 10.6 in Ni, pH 8.0 in Cu, pH 6.5 in Fe, pH 8.5 in Zn. But the metal ions are adsorbed physically on the surface of the spent catalyst in the range of the pH of the metal hydroxides and pH 3.0, which is the isoelectric point of the iron oxide catalyst.

Optimum Conditions of Dismantlement for Recovery of Valuables from Spent Lithium Primary Batteries (폐일차리튬전지로부터 유가금속을 회수하기 위한 해체공정의 최적화)

  • Yoo, Koungkeun;Kim, Hong-in;Sohn, Jeong-Soo
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.51-58
    • /
    • 2019
  • Dismantlement of lithium primary batteries without explosion is required to recycle the lithium primary batteries which could be exploded by heating too much or crushing. In the present study, the optimum discharging condition was investigated to dismantle the batteries without explosion. When the batteries were discharged with $0.5kmol{\cdot}m^{-3}$ sulfuric acid, the reactivity of the batteries decreased after 4 days at $35^{\circ}C$ and after 1 day at $50^{\circ}C$, respectively. This result shows that higher temperature removed the high reactivity of the batteries. Because loss of metals recycled increases when the batteries are discharged only with the sulfuric acid, discharging process using acid solution and water was newly proposed. When the batteries were discharged with water during 24 hours after discharging with $0.5kmol{\cdot}m^{-3}$ sulfuric acid during 6 hours, the batteries discharged were dismantled without explosion. Because decrease in loss of metals was accomplished by new process, the recycling process of the batteries could become economic by the 2-step discharging process.