• Title/Summary/Keyword: 근접소음

Search Result 119, Processing Time 0.022 seconds

A Case Study of Deck-Charge Blasting Using Electronic Blasting Systems In Urban Area (분산장약공법을 이용한 도심지 전자발파 시공사례)

  • Son, Young-Bok;Kim, Gab-Soo;Kim, Jae-Hoon
    • Explosives and Blasting
    • /
    • v.34 no.3
    • /
    • pp.21-26
    • /
    • 2016
  • In case of urban blasting works at near neighbors, the size of one blasting should be minimized to reduce the vibration and noise. However, the complaints is not decreased due to increased numbers of blasting per day so that the period of blasting works become long. This case study is related to urban apartment construction site. In order to overcome the weakness of general detonators which is required many blasting times to meet the day productivity, we have been applied deck-charge blasting method using electronic detonators and then we successfully increased the day productivity with much less blasting times. Hence, we had effectively achieved the declined neighbors'complaints and shortening construction period.

Study on the Method of Stack Effect Mitigation by the Elevator Shaft Pressurization at High-rise Buildings (고층건물에서 승강기 승강로 가압을 통한 연돌효과 저감 방법에 대한 연구)

  • Kim, Jin-Soo;Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.178-183
    • /
    • 2011
  • In cold season, the elevator systems in super high-rise buildings would make noises at the door-gaps on high floors, and the elevator doors on the 1st floor would suffer from opening/closing trouble due to the pressure differences. Such pressure differences are also the main driving power of smokes through the hoistway in the case of fire. In addition, the pressure differences should be overcome to use the elevator systems as a measure of emergency escape. This paper reviews the way of hoistway pressurization to reduce the adverse influences. Simulations achieved a good result close to the requirements of NFPA 92A and IBC 2012 under the condition that the hoistway should be pressurized after pressure equalizing between floors and hoistway with the openings through the hoistway wall.

On the Source Identification by Using the Sound Intensity Technique in the Radiated Acoustic Field from Complicated Vibro-acoustic Sources (음향 인텐시티 기법을 이용한 복잡한 진동-음향계의 방사 음장에 대한 음원 탐색에 관하여)

  • 강승천;이정권
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.708-718
    • /
    • 2002
  • In this paper, the problems in identifying the noise sources by using the sound intensity technique are dealt with for the general radiated near-field from vibro-acoustic sources. For this purpose, a three-dimensional model structure resembling the engine room of a car or heavy equipment is considered. Similar to the practical situations, the model contains many mutually coherent and incoherent noise sources distributed on the complicated surfaces. The sources are located on the narrow, connected, reflecting planes constructed with rigid boxes, of which a small clearance exists between the whole box structure and the reflecting bottom. The acoustic boundary element method is employed to calculate the acoustic intensity at the near-field surfaces and interior spaces. The effects of relative source phases, frequencies, and locations are investigated, from which the results are illustrated by the contour map, vector plot, and energy streamlines. It is clearly observed that the application of sound intensity technique to the reactive or reverberant field, e.g., scanning over the upper engine room as is usually practiced, can yield the detection of fake sources. For the precise result for such a field, the field reactivity should be checked a priori and the proper effort should be directed to reduce or improve the reactivity of sound field.

Identification of the Sectional Distribution of Sound Source in a Wide Duct (넓은 덕트 단면내의 음원 분포 규명)

  • Heo, Yong-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.87-93
    • /
    • 2014
  • If one identifies the detailed distribution of pressure and axial velocity at a source plane, the position and strength of major noise sources can be known, and the propagation characteristics in axial direction can be well understood to be used for the low noise design. Conventional techniques are usually limited in considering the constant source characteristics specified on the whole source surface; then, the source activity cannot be known in detail. In this work, a method to estimate the pressure and velocity field distribution on the source surface with high spatial resolution is studied. The matrix formulation including the evanescent modes is given, and the nearfield measurement method is proposed. Validation experiment is conducted on a wide duct system, at which a part of the source plane is excited by an acoustic driver in the absence of airflow. Increasing the number of evanescent modes, the prediction of pressure spectrum becomes further precise, and it has less than -25 dB error with 26 converged evanescent modes within the Helmholtz number range of interest. By using the converged modal amplitudes, the source parameter distribution is restored, and the position of the driver is clearly identified at kR = 1. By applying the regularization technique to the restored result, the unphysical minor peaks at the source plane can be effectively suppressed with the filtering of the over-estimated pure radial modes.

The Ultra-Centrifuge Rotordynamics (초고속 원심분리기의 회전체동역학 설계)

  • 이안성;김영철;박종권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.319-323
    • /
    • 1996
  • \ulcorner\ulcorner\ulcorner\ulcorner 80,000 rpm \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner(ultra-centrifuge)\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner. \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner(critical speed)\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner(separation margin)\ulcorner \ulcorner\ulcorner, \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner \ulcorner\ulcorner-\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner. \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner \ulcorner\ulcorner\ulcorner, \ulcorner\ulcorner \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner(extra slender shaft)\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner. \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner, \ulcorner\ulcorner 1\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner(bumper ring) \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner(guide bearing)\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner. \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner(finite element method)\ulcorner \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner, \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner(damping)\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner.

  • PDF

A Case Study on Construction of a Large-Scale Tunnel Blasting Using Electronic Detonator (전자뇌관을 이용한 대단면 터널 시공 사례)

  • Hwang, Nam-Sun;Lee, Dong-Hee;Jung, Min-Sung;Kim, Nam-Soo
    • Explosives and Blasting
    • /
    • v.36 no.2
    • /
    • pp.19-26
    • /
    • 2018
  • The measures for environmental regulations have become more strict over the recent years. Due to vibration and noise arising from blasting, every site that chooses to handle explosives has to be under certain restrictions in its use. Especially a site where a safety thing is situated within close proximity, the chosen method is through mechanical excavation. However, various applications of electronic detonators has made blasting possible where mechanical excavation used to be the only alternative. Hanwha Corporation has developed an electronic detonator, $HiTRONIC^{TM}$, which is an advanced fourth-generation detonator with a high accuracy of delay time(0.01%). At this moment, $HiTRONIC^{TM}$ is widely used in highway and railway construction sites, large limestone quarries, and many other blasting sites where blasting had not been an available option before. In this paper, I would like to introduce a case study on construction of utilizing $HiTRONIC^{TM}$ at a large-scale tunnel site.

Effect of Joint Reinforcement on Reinforced Concrete Pile by Centrifugal Casting (원심성형 철근콘크리트 말뚝 이음부의 보강 효과)

  • Joo, Sanghoon;Hwang, Hoonhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.501-509
    • /
    • 2019
  • The construction of foundation piles for buildings and bridges is changing from pile driving to an injected precast pile method. The goal is to minimize environmental damage, noise pollution, and complaints from neighboring residents. However, it is necessary to develop economic piles that are optimized for precasting by a centrifugal method in terms of both the material and structural system. A reinforced joint method is proposed for reinforced concrete piles (RC piles) manufactured by centrifugal casting. A previous study concluded that the structural performance of the current joint system for RC piles could be improved by using a reinforced joint composed of extended circular band plates and studs. In this study, the structural performance of such a joint was validated experimentally by bending and shear strength measurements. The proposed joint reinforcement method showed adequate structural performance in terms of bending and shear strength. The overall load-deflection behavior is close to that of a structure without joints, so it is expected that the behavior and performance of the design can be reliably reflected in site structures.

Safety Performance Evaluation of Blowers for 1kW Class Stationary Fuel Cell System (1kW급 건물용 연료전지시스템 블로워의 안전성능 평가)

  • Lee, Jungwoon;Kim, Younggyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.90.2-90.2
    • /
    • 2011
  • 세계 각 국에서는 선진국을 중심으로 기후변화와 치솟는 유가에 대응하기 위하여 다양한 에너지원의 확보를 위해 부단히 노력하고 있다. 특히, 신재생에너지원 중 에너지 지속성이 가장 우수한 연료전지의 경우 1kW급 건물용 연료전지시스템이 도시가스 인프라가 가장 우수한 한국 및 일본을 중심으로 상용화에 가장 근접해 있는 실정이다. 일본의 경우 가정용 연료전지시스템 '에너팜'의 일부 제품이 올해부터 200만엔대로 가격을 내려 보급되어질 예정이고, 아직은 경제성이 떨어지지만 연료전지 조기 상용화를 위해 시스템 가격저감을 통한 기술개발이 한창이다. 또한 700W급 고체산화물형 연료전지시스템을 세계에서 처음 시판 계획을 가지고 있다. 국내의 경우 2009년도부터 시작된 '그린홈 보급확대를 위한 건물용 연료전지 보조기기 가격저감 기술개발'연구를 통해 블로워, 밸브, 유량계 및 펌프 등의 보조기기의 단가를 낮추고자 기술개발에 박차를 가하고 있다. 이에 따른 연료전지 부품 가격저감 기술이 국내 건물용 연료전지 시장보급의 활력소가 되기를 기대한다. 본 연구에서는 건물용 연료전지의 보조기기인 블로워의 가격저감을 위한 연구의 일환으로 블로워의 안전성능 평가를 통한 보조기기의 가격저감 및 안전성을 확보하고자 한다. 1kW급 건물용 연료전지시스템의 여러 블로워 중 도시가스용 연료승압 블로워, 선택산화 공기 블로워, 버너 공기 블로워 및 캐소드 공기 블로워의 안전성능 평가를 수행하였고, 평가결과의 공유를 통하여 국내 블로워 제조사의 설계방향을 제시하고 연료전지시스템의 안전성을 확인하고자 한다. 특히, 내구성, 기밀, 가혹조건시험 및 소음, 진동, 습도, 온도와 같은 내주위환경시험 등의 평가결과 비교를 통하여, 연료전지 부품 인증기준을 재정립하여 연료전지 부품산업의 조기 활성화를 도모하고자 한다.

  • PDF

A Case Study of Blasting with Electronic Detonator (전자뇌관을 활용한 발파 시공 사례)

  • Hwang, Nam-Sun;Lee, Dong-Hoon;Lee, Seung-Jae
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.40-45
    • /
    • 2016
  • Sites, where explosives are used, are constantly under constraint of vibration and noise levels. If a sensitive area is located nearby the sites, mechanical excavation has been preferred rather than blasting. Recently, however, blasting using electronic detonators is applicable in the areas, where previously should be excavated by mechanical methods. $HiTRONIC^{TM}$ is a fourth-generation detonator that utilizes Hanwha Corporation's advanced electronic technology. The detonator contains IC-Chip, which allows delay times between 0~15,000ms with 1ms interval. Furthermore, the product can provide high accuracy(0.01%) for accurate-blasting. Electronic detonator is widely used in highway and railway construction sites, large limestone quarries, and other works. In this paper, several sites, in which HiTRONIC was used, are introduced in order to enhance understanding of electronic detonator.

Analysis of Research Trend and Development Direction on Domestic and International Noise Barriers (국내외 방음벽 관련 연구동향 분석 및 개발 방향)

  • Ahn, Hosang;Kim, Ilho;Park, Jong-Bin;Lee, Ju Haeng;Kim, Gwang Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.847-854
    • /
    • 2012
  • The demand for noise barriers and necessity for the installation are highly growing because residential areas have become diverse and locational priority is changed to consider how to approach highway easily. However, public annoyance to the noise generated from highway is continued despite lots of noise barrier are installed. Moreover, there are growing concerns to maintain noise barriers to be free from losing transparency, dust stack, and shock fracture. To resolve these issues, it is suggested to develop new polymer materials and conceptually new noise barrier. In this study, as a first step to develop a new noise barrier to overcome current technological challenges as well as economic issues, recent research trends have been analyzed and found the direction for the future research in terms of material, supplementary function, and patterning.