Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.12
/
pp.2213-2220
/
2017
This paper proposes an efficient approach for hardware implementation of moving object detection (MOD) processor using effective Gaussian mixture learning (EGML)-based background subtraction method. Arithmetic units used in background generation were implemented using LUT-based approximation to reduce hardware complexity. Hardware resources used for both background subtraction and Gaussian probability density calculation were shared. The MOD processor was verified by FPGA-in-the-loop simulation using MATLAB/Simulink. The MOD performance was evaluated by using six types of video defined in IEEE CDW-2014 dataset, which resulted the average of recall value of 0.7700, the average of precision value of 0.7170, and the average of F-measure value of 0.7293. The MOD processor was implemented with 882 slices and block RAM of $146{\times}36kbits$ on Virtex5 FPGA, resulting in 60% hardware reduction compared to conventional design based on EGML. It was estimated that the MOD processor could operate with 75 MHz clock, resulting in real-time processing of $800{\times}600$ video with a frame rate of 39 fps.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.7
/
pp.846-851
/
2005
In this paper, we propose Genetic Algorithms(GAs)-based Optimized Polynomial Neural Networks(PNN). The proposed algorithm is based on Group Method of Data Handling(GMDH) method and its structure is similar to feedforward Neural Networks. But the structure of PNN is not fixed like in conventional neural networks and can be generated in a dynamic manner. As each node of PNN structure, we use several types of high-order polynomial such as linear, quadratic and modified quadratic, and it is connected as various kinds of multi-variable inputs. The conventional PNN depends on the experience of a designer that select the number of input variables, input variable and polynomial type. Therefore it is very difficult to organize optimized network. The proposed algorithm leads to identify and select the number of input variables, input variable and polynomial type by using Genetic Algorithms(GAs). The aggregate performance index with weighting factor is proposed as well. The study is illustrated with tile NOx omission process data of gas turbine power plant for application to nonlinear process. In the sequel the proposed model shows not only superb predictability but also high accuracy in comparison to the existing intelligent models.
We had conducted a numerical modeling to investigate seismic properties of gas hydrate with field parameters acquired over the East sea in 1998. We used a 2-D staggered grid finite difference method to generate synthetic elastic seismograms for multi-channel seismic survey, OBC (Ocean Bottom Cable) survey and VCS (Vertical Cable Seismic) survey. The results of this study showed that the method using staggered grid yielded stable results and could be used to seismic imaging. We could find out the high amplitude anomaly and the phase reversal phenomenon of reflection wave at interface between the gas hydrate layer and free gas layer such a BSR (Bottom Simulating Reflector) which is the evidence for existence of gas hydrate in seismic reflection data. And we computed the reflection coefficients at the incident angles corresponding to offset distance with the synthetic seismograms. The reflection coefficients acquired from the numerical modeling were nearly consistent with the reflection coefficient computed by Shuey's equation.
Recently, steel casing became an interesting issue when applying controlled-source electromagnetic (EM) method to various fields because effects of steel casing on EM responses are not negligible. This study employed an approach that approximates the steel casing as a series of electric dipole sources in order to develop the numerical algorithm for the efficient simulation of EM responses in the presence of steel casing. After verifying the validity of the developed algorithm, we analyze effects of steel casing on EM responses with the synthetic model simulating geothermal reservoir environment. The analysis showed that the effects of steel casing on EM responses are localized near the casing and increase as the transmitter becomes close to the casing. In addition, through the analysis on the EM responses by the injection of clean water, we confirm that the effects of casing are negligible when interpreting the after-injection data acquired using the transmitter located far enough from the casing. Considering the difference in EM responses between before and after injection in inversion, the effects of the casing can be neglected although after-injection data shows considerable difference due to the close distance between the transmitter and casing. To investigate this kind steel casing effect, the precise analysis on EM responses should be preceded. The algorithm introduced in this study will contribute to the reliable calculations of EM responses distorted by the conductive steel casing.
If one identifies the detailed distribution of pressure and axial velocity at a source plane, the position and strength of major noise sources can be known, and the propagation characteristics in axial direction can be well understood to be used for the low noise design. Conventional techniques are usually limited in considering the constant source characteristics specified on the whole source surface; then, the source activity cannot be known in detail. In this work, a method to estimate the pressure and velocity field distribution on the source surface with high spatial resolution is studied. The matrix formulation including the evanescent modes is given, and the nearfield measurement method is proposed. Validation experiment is conducted on a wide duct system, at which a part of the source plane is excited by an acoustic driver in the absence of airflow. Increasing the number of evanescent modes, the prediction of pressure spectrum becomes further precise, and it has less than -25 dB error with 26 converged evanescent modes within the Helmholtz number range of interest. By using the converged modal amplitudes, the source parameter distribution is restored, and the position of the driver is clearly identified at kR = 1. By applying the regularization technique to the restored result, the unphysical minor peaks at the source plane can be effectively suppressed with the filtering of the over-estimated pure radial modes.
This paper proposes a method of time-scale modification of polyphonic audio signals based on a sinusoidal model. The signals are modeled with sinusoidal component and noise component. A multiresolution filter bank is designed which splits the input signal into six octave-spaced subbands without aliasing and sinusoidal modeling is applied to each subband signal. To alleviate smearing of transients in time-scale modification a dynamic segmentation method is applied to subbands which determines the analysis-synthesis frame size adaptively to fit time-frequency characteristics of the subband signal. For extracting sinusoidal components and calculating their parameters matching pursuit algorithm is applied to each analysis frame of subband signal. In accordance with spectrum analysis a psychoacoustic model implementing the effect of frequency masking is incorporated with matching pursuit to provide a resonable stop condition of iteration and reduce the number of sinusoids. The noise component obtained by subtracting the synthesized signal with sinusoidal components from the original signal is modeled by line-segment model of short time spectrum envelope. For various polyphonic audio signals the result of simulation shows suggested sinusoidal modeling can synthesize original signal without loss of perceptual quality and do more robust and high quality time-scale modification for large scale factor because of representing transients without any perceptual loss.
We propose a novel method to detect abnormal data of specific symptoms using deep learning in air pollution measurement system. Existing methods generally detect abnomal data by classifying data showing unusual patterns different from the existing time series data. However, these approaches have limitations in detecting specific symptoms. In this paper, we use DeepLab V3+ model mainly used for foreground segmentation of images, whose structure has been changed to handle one-dimensional data. Instead of images, the model receives time-series data from multiple sensors and can detect data showing specific symptoms. In addition, we improve model's performance by reducing the complexity of noisy form time series data by using 'piecewise aggregation approximation'. Through the experimental results, it can be confirmed that anomaly data detection can be performed successfully.
Kim, Dong-Yeon;Lim, Jae Hyuk;Jang, Tae-Seong;Cha, Won Ho;Lee, So-Jeong;Oh, Hyun-Ung;Kim, Kyung-Won
Journal of Aerospace System Engineering
/
v.13
no.3
/
pp.78-86
/
2019
This paper describes the stiffness optimization of the torsion spring hinge of the large SAR antenna considering the deployment performance. A large SAR antenna is folded in a launch environment and then unfolded when performing a mission in orbit. Under these conditions, it is very important to find the proper stiffness of the torsion spring hinge so that the antenna panels can be deployed with minimal impact in a given time. If the torsion spring stiffness is high, a large impact load at the time of full deployment damages the structure. If it is weak, it cannot guarantee full deployment due to the deployment resistance. A multi-body dynamics analysis model was developed to solve this problem using RecurDyn and the development performance were predicted in terms of: development time, latching force, and torque margin through deployment analysis. In order to find the optimum torsion spring stiffness, the deployment performance was approximated by the response surface method (RSM) and the optimal design was performed to derive the appropriate stiffness value of the rotating springs.
The laboratory Mejus as well as home-made Meju and improved Meju received from Korea were ripened in the brine for up to 8 months and the changes is the chemical composition during the process were determined and the differences between the types of Meju were compared. On the basis of the amino acid pattern, the changes in the protein quality of soybean during the process was evaluated. No significant changes in the general chemical composition of Meju were noticed during the ripening for 8 months. However, the nitrogen solubility of Meju increased for $13{\sim}29%$ to $66{\sim}78%$ during 8 month ripening of the Meju-brine mixture. The concentration of free amino-N to the total-N increased from $4{\sim}7%$ in Meju to $29{\sim}35%$ in the 8month ripened mixture. The concentration of amino-N to the total-N increased from $1{\sim}4%$ in Meju to $5{\sim}14%$ in the 8month ripened mixture and the changes varied with the type of Meju used. Remarkable changes in the amino acid pattern of soybean were occured during the ripening process. The concentration of methionine decreased to the half of original Meju during the first month of ripening. Arginine and histidine were destroyed rapidly by the ripening longer than 1 month. A considerable amount of ornithine was synthesized during the ripening. The amino acid pattern of Meju did change drastically during the ripening longer than 3 months and the changes varied with the type of Meju. The retention of the nutrients in soybean during 8 month ripening of the laboratory 3 month Meju in the brine was 49% for carbohydrates, 107% for crude fat, 93% for crude protein and 74% for the total amino acid. Histidine, arginine and methionine and 74% for the total amino acid. Histidine, arginine and methionine were the most damaged during the process, retaining only 25%, 27% and 49% of the contents in raw soybean, respectively, whereas lysine retained 79%. By the separation of the 8 month ripened mixture, approximately 60% of crude protein, all of crude fat and 80% of carbohydrates in the mixture were retained in soypaste. Soypaste contained higher concentrations of amino acids per 16gN compared to soysauce, except for lysine. The most limiting amino acid of the protein was the S-containing amino acids in all cases studied, whereas the second limiting amino acid varied from valine in soybean to threonine in most of Mejus and the brine mixtures, lysine in most of soypastes and tryptophan in some of soysauces. According to the protein quality evaluation made by the reference of the FAO provisional pattern of amino acid, the chemical score of raw soybean was 82, which was reduced to 77 by cooking and further reduced to $71{\sim}74$ by Meju fermentation. At the eighth month of ripening the chemical score of the Meju-brine mixtures were reduced to $51{\sim}66. After the separation, the chemical score of soypaste ranged from 60 to 71, whereas that of soysauce varied from 45 to 57. Generally, the products made from improved Meju recorded the highest score, whereas those made from homemade Meju showed the poorest protein quality. The essential amino acid index(EAAI) of the samples was similar to the chemical score, but it appeared to fit the overall changes in the amino acid pattern during the process better than the chemical score.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.