• Title/Summary/Keyword: 극한휨강도

Search Result 148, Processing Time 0.036 seconds

Ultimate Stress of Unbonded Tendons in Post-Tensioned Flexural Members (포스트텐션 휨부재에서 비부착긴장재의 극한응력)

  • Lee, Deuck-Hang;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.489-499
    • /
    • 2009
  • It is quite difficult to predict the flexural strength of post-tensioned members with unbonded tendons (unbonded posttensioned members, UPT members) because of debonding behavior between concrete and prestressing tendons, which is different from that with bonded tendons. Despite many previous researches, our understanding on the flexural strength of UPT members is still insufficient, and thus, national codes use different methods to calculate the strength, which quite often give very different results. Therefore, this paper reviews various existing methods, and aims at proposing an improved rational strength model for UPT flexural members having better accuracy. Additionally, a database containing a large number of test data on UPT flexural members has been established and used for verification of the proposed flexural strength model. The analysis results show that the proposed method provides much better accuracy than many existing methods including the rigid-body model that utilizes the assumption of concentrated deformation and plastic hinge length, and that it also gives proper consideration on the effects of primary parameters such as reinforcement ratio, loading pattern, concrete strength, etc. Especially, the proposed method also well predicts the ultimate stress of unbonded tendons of over-reinforced members, which are often possible in construction fields, and high strength concrete members.

Size Effect for Flexural Compressive Strength of Concrete (콘크리트의 휨 압축강도의 크기효과)

  • Kim, Jin-Keun;Yi, Seong-Tae;Yang, Eun-Ik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 1999
  • When the ultimate strength of a concrete flexural member is evaluated, the effect of member size is usually not considered. For various types of loading, however, the strength always decreases with the increment of member size. In this paper the size effect of a flexural compression member is investigated by experiments. For this purpose, a series of C-shaped specimens subjected to axial compressive load and bending moment was tested using three different sizes of specimens with a compressive strength of 528 kg/$cm^2$. According to test results the size effect on flexural compressive strength was apparent, and more distinct than that for uniaxial compressive strength of cylinders. Finally a model equation was derived using regression analyses with experimental data.

Revaluation of Nominal Flexural Strength of Composite Girders in Positive Bending Region (정모멘트부 강합성거더의 공칭휨강도 재평가)

  • Youn, Seok Goo
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.165-178
    • /
    • 2013
  • This paper presents a research work for the evaluation of the nominal flexural strength of composite girders in positive bending region. Current predicting equations for the nominal flexural strength of composite girders in the 2012 version of the Korea Bridge Design Codes based on Limit State Design Method are able to apply for the composite girders with conventional structural steels. For applying composite girders with high yield strength steels of HSB800 as well as HSB600, there is a need for improving the current predicting equations. In order to investigate the nominal flexural strength of composite girders, previous research works are carefully reviewed and parametric study using a moment-curvature analysis program is conducted to evaluate the ultimate moment capacity and the ductility of a wide range of composite girders. Based on the results of the parametric study, less conservative nominal flexural strength design equations are proposed for conventional composite girders. In addition, new design equations for predicting the nominal flexural strength of composite girders with HSB600 and HSB800 high-performance steels are provided.

The Mechanism of Load Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.113-123
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcements and the ratio of shear rebars. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. The increase of plastic deformation after yielding transforms the shear transfer by arch action into by truss action. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The strain distribution model of shear reinforcements and flexural reinforcements based on test results is presented. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The flexural-shear failure mechanism determines the ultimate state of RC coupling beams. It is expected that this model can be applied to displacement-based design methods.

Calculation for of Strength Reduction Factor for Concrete Beam reinforced with GFRP rebars (GFRP rebar로 보강된 콘크리트보의 휨 강도감소계수 보정식 제안)

  • Sim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kang, Tae-Sung;Kwon, Dong-Wook;Lee, Yong-Taek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.137-140
    • /
    • 2008
  • If the flexural member of concrete is designed using the FRP rebar, suddenly brittleness destruction resulted from the fracture of FRP rebar is generated in the extreme situation because of brittleness characteristics of FRP rebar and concrete when designed to be less than balanced reinforcement ratio, so it is recommended to design the flexural member of concrete to be more than balanced reinforcement ratio. In ACI 440.1R-06 proposes the different bending strength decrease coefficient according to destructive form of concrete flexural member using the FRP rebar. However, ACI 440.1R-06 applies the same strength decrease coeffient to all FRP rebars made of diverse materials. If the same strength decrease coefficient is applied to all FRP rebars, effect of increasing the reinforcement ratio and selection of FRP rebar will be considerably limited. In this regard, we are to propose the formula to calculate the bending strength decrease coefficient in consideration of change in characteristics of FRP rebar and L/D through the reliability analysis in this paper.

  • PDF

Flexural Behavior of High Performance Fiber Reinforced Cementitious Composites (HPFRCC) Beam with a Reinforcing Bar (휨 철근이 배근된 HPFRCC 보 부재의 휨 거동)

  • Shin, Kyung-Joon;Kim, Jae-Hwa;Cho, Jae-Yeol;Lee, Seong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.169-176
    • /
    • 2011
  • In this study, the flexural test for reinforced high performance fiber reinforced cementitious composites (R/HPFRCC) members has been conducted in order to investigate the flexural behavior including the effect of an ordinary tensile reinforcing bar. Through the test, it was observed that the flexural strength increased due to the stable tensile stress transfer of HPFRCC, even up to the ultimate state. In addition, no localized crack appeared until the yielding of the reinforcement. From the layered section analysis of the tested members, it was found that the analysis with the tensile model obtained from the tension stiffening test showed better agreement with the flexural test results, whereas the analysis with direct tension test results overestimated the flexural capacity. Through the experimental and analytical studies, two flexural failure modes have been defined in this paper; concrete crushing at the top compression layer or tensile failure at the bottom tensile layer of the beam section. Based on these two flexural failure modes, a simple formula that estimates the ultimate flexural strength of the member has been proposed in this paper. The proposed equations can be useful in a design and an analysis of R/HPFRCC members.

Evaluation of Ductility in Reinforced Concrete Members Using Material Models in Eurocode2 (유로코드 2 재료모형을 사용한 철근콘크리트 부재의 연성도 평가)

  • Choi, Seung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.287-297
    • /
    • 2015
  • In concrete structural design provisons, there is a minimum allowable strain of steel to ensure a ductility of RC members and a c/d is limited for the same purpose in EC2. In general, a ductility capacity of RC members is evaluated by a displacement ductility which is a ratio of ultimate displacement to yield displacement, and it is necessary to calculate accurately a yield displacement and an ultimate displacement to evaluate a displacement ductility. But a displacement in members is affected by various member characteristics, so it is hard to calculate a displacement exactly. In this study, a displacement ductility is calculated by calculating a yield displacement and an ultimate displacement through a moment-curvature relationship. The main variables examined are concrete strength, yield strength, steel ratio, spacing of confinement, axial force ratio and concrete ultimate strain. As results, as a concrete strength is increased, a ductility displacement is increased. But as yield strength, steel ratio, spacing of confinement and axial force ratio are increased, a displacement ductility is decreased. And a displacement ductility is necessary to calculate a response modification factor (R) of columns for seismic design, so it is appeared that it is important to calculate a displacement ductility more accurately.

An Experimental Assessment on the Structural Behavior of Bolt Connected Deep Corrugated Steel Plate (볼트이음된 대골형 파형강판의 구조거동에 대한 실험적 평가)

  • Oh, Hong Seob;Lee, Ju Won;Jun, Beong Gun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.79-87
    • /
    • 2011
  • Deep corrugated steel plate structure has more compressive force and flexibility in bending behavior than short span structure. Asymmetric earth pressure distribution has occurred during construction. Ultimate strength and moment in domestic area, having superior ability at bending strain has been examined in this study. Based on the result of the study preceded, performance of Deep corrugated steel plate specimen has been evaluated by comparing increase of strength according to the increase of reinforcement content in bolt connections and failure mode of specimen.

Experimental Evaluation for Ultimate Flexural Behaviors of PSC beams with A Corroded Tendon (PS강연선이 부식된 PSC보의 극한휨거동 평가실험)

  • Youn, Seok-Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.843-854
    • /
    • 2013
  • This paper presents experimental research work for the evaluation of ultimate flexural behaviors of prestressed concrete beams with a corroded tendon. In order to evaluate the effects of loss of prestress or loss of tendon area on the ultimate flexural strength of prestressed concrete beams, static load tests are conducted using five prestressed concrete beams. After exposing prestressing tendons in two test beams using 25mm drill bit, the exposed tendons were corroded using an accelerating corrosion equipment to simulate loss of tendon area. During the tests, steel strains, concrete strains and displacements at the center of test beams were measured, and acoustic emission measurements were conducted to detect wire fractures. Based on the test results, evaluation method for predicting flexural strength of prestressed concrete beams with corroded tendons is investigated. In addition, evaluation methods for predicting the existence of corroded tendons in post-tensioned prestressed concrete beams at service loads are discussed.

Stress Block of High Strength Polymer Concrete Flexural Members (고강도 폴리머 콘크리트 휨부재의 응력블럭)

  • 김관호;김남길;연규석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.638-644
    • /
    • 2002
  • The stress-strain relationship of polymer concrete flexural member was evaluated using C-shaped polyester concrete specimen, the compressive strength of which is 1400 kgf/$\textrm{cm}^2$. Eccentric compression test was performed to estimate the parameters, ${\alpha}$, ${\beta}$1, ${\gamma}$ for equivalent rectangular stress block. The ultimate moment strength ware obtained from the bending test on reinforced polymer concrete beams which were prepared with S different tensile steel ratios with a shear span ratio of 4.0. These values were compared with theoretical ultimate moment strengths, which were obtained using the parameters ${\alpha}$=0.61 and ${\beta}$1=0.73 from stress-stain curves of C-shaped specimens. The results showed that, when tensile steel ratio was over 0.50 $\rho$b, the experimentally obtained moment strengths were well matched with theoretically calculated values. In order to develop accurate criteria for polymer concrete flexural members, however, many other expermental studies for parameter determination are necessary using C-shaped specimens which have various compressive strengths and different sizes.