• Title/Summary/Keyword: 극한해석

Search Result 751, Processing Time 0.029 seconds

Evaluation of Domestic and Foreign Design Standards for Soil Nailing Method by Analysis of Slope Restoration Case (비탈면 복구사례 분석을 통한 쏘일네일링 공법의 국내외 설계기준 평가)

  • You, Kwang-Ho;Kim, Tae-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.11
    • /
    • pp.11-22
    • /
    • 2019
  • Limit state design (LSD) and allowable stress design (ASD) are two main types of soil nailing design methodologies. In the LSD method, stability is determined by applying individual coefficients to ground strength, working load and etc. The ASD method calculates the safety factor and compares it with the minimum safety factor to determine the stability. The global design trend of soil nailing system is changing from the ASD method to the LSD method. The design method in Korea still adopts the ASD philosophy while others mostly do the limit state design. In this study, four soil nail design methods, 'FHWA GEC 7' in U.S. (2015), 'Clouterre' in France (1991), 'Soil nailing - best practice guidance' in U.K. (2005), 'Geoguide 7' in Hongkong (2008), and 'Design guide for slope in construction work' in Korea (2016) were applied to the evaluation of the stability and the results were analyzed comparatively in brief. It is revealed that the design method of 'the overall stability of soil nail walls' in Korea is the most conservative and next those by FHWA, Clouterre and CIRIA become more conservative in order. However, the difference of results obtained from FHWA and Clouterre is negligible. Also, this study found out that efforts to improve domestic design criterion are needed.

Evaluation on the Bending Behavior After Yield of RC Beam by Using Image Processing Method(I): Focused on the Compressive Part (영상 분석 기법을 이용한 RC 부재의 항복 후 휨 거동 분석(I): 압축부를 중심으로)

  • Kim, Kun-Soo;Park, Ki-Tae;Woo, Tae-Ryeon;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.39-46
    • /
    • 2022
  • As the limit state design method is applied as the design method of reinforced concrete structure, the ultimate state is considered when analyses or designing. In fact, when the reinforced concrete member is bent, there is a confining effect by stirrup, but the material curve of unconfined concretes applied when designing. In this study, to evaluate the suitability of the confined concrete model for flexural members, a 4-point bending test was conducted on RC simple beam with a double-reinforced rectangular cross-section, and the behavior of the member after yield was analyzed in detail using image processing method. For detailed analysis, the DIC method was adopted as an image analysis method, and the validity of DIC method was verified by comparing the measurement results with the LVDT. The distribution of the strain on the concrete surface calculated as a result of the DIC method could be obtained, and the average strain distribution of the cross-section was calculated. Using the average strain distribution, the stress distribution applied existing confined concrete model as a material curve could be derived. Through the comparison of the experimental results and the existing model application results, the suitability of the confined concrete model for RC flexural members having a rectangular cross-section was evaluated.

Analysis for flood reduction by rain storage tank (빗물저류조 설치에 의한 침수저감 분석)

  • Seung Wook Lee;Seung Jin Maeng;Da Ye Kim;In Seong Park
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.356-356
    • /
    • 2023
  • 충청북도 청주시 상당구 월오동 251-7번지와 251-15번지 2곳에 각각 50m3 규모의 빗물저류조를 대상으로 2017년 7월 16일 호우사상을 적용하여 설치 전·후의 침수저감 효과를 분석하였다. 침수분석을 위해 지형자료는 국토정보플랫폼에 있는 1:25,000 자료를 활용하였으며, 모의 전 대상지역의 관망구축에 따른 지형자료를 구축하였고 관망은 노드 40개와 링크 39개로 구성하였다. SWMM 모형을 구동하여 유역내 유출량을 분석하기 위해 유역과 관련한 입력자료와 이외 유역간의 연결부인 관거 하도 입력자료 구축 및 하도와 하도를 연결하는 모델상의 Junction인 실제 맨홀과 관련한 입력자료를 구축하였다. 관거 입력자료로는 관거의 제원, 길이, 깊이 등의 자료를 수집하여 사용하였다. 빗물저류조 설치전·후의 침수저감효과를 분석하기 위해 빗물저류조 설치전의 침수양상을 모의 하였으며 각각 강우발생 후 30분, 50분, 70분, 90분, 110분, 130분 및 150분으로 구분하여 분석하였다. 강우발생 후 150분의 모의분석 결과, 침수심은 0.2<깊이<0.4의 면적이 600m2로 가장 넓은 침수분포를 나타내었으며, 총 침수면적은 2,225m2로 모의되었다. 이는 강우발생 후130분 보다 125m2 더 침수되었으며, 0.8<깊이<1.0의 면적은 150m2로 모의되었다. 전체적인 침수심도 커진 것으로 분석되었다. 빗물저류조 설치 후의 침수양상을 모의하였으며 각각 강우발생 후 30분, 50분, 70분, 90분, 110분, 130분 및 150분으로 분석하였다. 강우발생 후 150분의 모의분석 결과, 침수심은 0.2<깊이<0.4의 면적이 250m2로 가장 많은 침수분포가 나타났으며, 총 침수면적은 550m2으로 모의 되었다. 이는 강우발생 후 110분과 침수면적은 동일하게 모의 되었으며, 침수심 0.2<깊이<0.4의 면적은 250m2로 모의 되었다. 따라서 해당 지역에 50m3 규모의 빗물저류조 2개를설치 할 경우 침수피해가 저감되는 것으로 분석되었다. 이러한 분석 결과를 바탕으로 향후 도시내 상습침수구역에 빗물저류조를 설치하여 기후변화에 따른 극한 강우에 대비할 수 있도록 해야 할 것이다.

  • PDF

Dynamic p-y Backbone Curves for a Pile in Saturated Sand (포화 사질토 지반에서의 동적 p-y 중추곡선)

  • Yang, Eui-Kyu;Yoo, Min-Taek;Kim, Hyun-Uk;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.27-38
    • /
    • 2009
  • In this study, a series of 1 g shaking table model pile tests were carried out in saturated dense and loose sand to evaluate dynamic p-y curves for various conditions of flexural stiffness of a pile shaft, acceleration frequency and acceleration amplitude for input loads. Dynamic p-y backbone curve which can be applied to pseudo static analysis for saturated dense sand was proposed as a hyperbolic function by connecting the peak points of the experimental p-y curves, which corresponded to maximum soil resistances. In order to represent the backbone curve numerically, empirical equations were developed for the initial stiffness ($k_{ini}$) and the ultimate capacity ($p_u$) of soils as a function of a friction angle and a confining stress. The applicability of a p-y backbone curve was evaluated based on the centrifuge test results of other researchers cited in literature, and this suggested backbone curve was also compared with the currently available p-y curves. And also, the scaling factor ($S_F$) to account for the degradation of soil resistance according to the excess pore pressure was developed from the results of saturated loose sand.

Determination of Floodplain Restoration Area Based on Old Maps and Analysis on Flood Storage Effects of Flood Mitigation Sections (고지도를 활용한 홍수터 복원 구역 선정 및 홍수완충공간의 홍수 저류효과 분석)

  • Dong-jin Lee;Un Ji;Sanghyuk Kim;Hong-Kyu Ahn;Eun-kyung Jang
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.2
    • /
    • pp.40-49
    • /
    • 2023
  • To reduce the damage of extreme flooding caused by climate change and to create flood mitigation sections in a nature-friendly riparian area, it is necessary to restore the floodplain area by referring to the past floodplain section of the current inland waterfront area before the levee was built. This study proposed a method of selecting a location for floodplain restoration using old maps of the Geum River study section and analyzed the effect of flood level reduction through unsteady flow numerical simulations using the floodplain as a flood mitigation space. As a result of analyzing changes in the river areas using old maps, the river section was estimated to gradually reduce by 27.8% (1,059,380 m2) in 2020 compared to 1919, and it was found to have an effective storage capacity of 2,200,868 m3 when restored to offline storage. The flood level and discharge control effects analyzed based on HEC-RAS unsteady flow simulation were 16 cm and 219.01 m3/s, respectively, in the downstream cross-section. In the numerical simulation in this paper, the flood mitigation space was applied as an offline reservoir. The effect of reducing the flood level may differ if levee retreat/relocation is applied.

A Study on Compact Section Requirements for Plate Girder Web Panels with Longitudinal Stiffeners (수평보강재가 설치된 플레이트거더 복부판의 조밀기준에 관한 연구)

  • Lee, Myung Soo;Lee, Doo Sung;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.503-512
    • /
    • 2010
  • In AASHTO LRFD (2007), a compact section is defined as a section in which no premature failure caused by local buckling of web and flange plate or later buckling occurs before the section reaches the plastic moment, Mp. The current AASHTO LRFD (2007) provides the compact section requirement by limiting the web slenderness only for webs without longitudinal stiffeners. The role of longitudinal stiffener is to increase the web buckling strength caused flexure. Although a web does not satisfy the compactness requirement without longitudinal stiffeners, the web buckling can be prevented by use of valid longitudinal stiffeners. Therefore, the web may be able to reach the plastic moment. However, the reason why a longitudinal stiffener may not be used to satisfy compactness requirement is not cleary explained in AASHTO LRFD (2007). In this study, the buckling and ultimate strength behaviors of stiffened webs subjected to bending are investigated through the linear buckling and nonlinear finite element analysis. It is found that steel plate girders having webs that do not satisfy the compactness requirement are able to reach the plastic moment if the longitudinal stiffeners have sufficient rigidities and are properly located. From a nonlinear regression analysis of the results, a new compactness requirement is suggested for webs stiffened with one longitudinal stiffener.

Estimation of Future Long-Term Riverbed Fluctuations and Aggregate Extraction Volume Using Climate Change Scenarios: A Case Study of the Nonsan River Basin (기후변화시나리오를 이용한 미래 장기하상변동 및 골재 채취량 산정: 논산천을 사례로)

  • Dae Eop Lee;Min Seok Kim;Hyun Ju Oh
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.107-117
    • /
    • 2024
  • The objective of this study is to estimate riverbed fluctuations and the volume of aggregate extraction attributable to climate change. Rainfall-runoff modeling, utilizing the SWAT model based on climate change scenarios, as well as long-term riverbed fluctuation modeling, employing the HEC-RAS model, were conducted for the Nonsan River basin. The analysis of rainfall-runoff and sediment transport under the SSP5-8.5 scenario for the early part of the future indicates that differences in annual precipitation may exceed 600 mm, resulting in a corresponding variation in the basin's sediment discharge by more than 30,000 tons per year. Additionally, long-term riverbed fluctuation modeling of the lower reaches of the Nonsan Stream has identified a potential aggregate extraction area. It is estimated that aggregate extraction could be feasible within a 2.455 km stretch upstream, approximately 4.6 to 6.9 km from the confluence with the Geum River. These findings suggest that the risk of climate crises, such as extreme rainfall or droughts, could increase due to abnormal weather conditions, and the increase in variability could affect long-term aggregate extraction. Therefore, it is considered important to take into account the impact of climate change in future long-term aggregate extraction planning and policy formulation.

Assessing the skill of seasonal flow forecasts from ECMWF for predicting inflows to multipurpose dams in South Korea (ECMWF 계절 기상 전망을 활용한 국내 다목적댐 유입량 예측의 성능 비교·평가)

  • Lee, Yong Shin;Kang, Shin Uk
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.571-583
    • /
    • 2024
  • Forecasting dam inflows in the medium to long term is crucial for effective dam operation and the prevention of water-related disasters such as floods and droughts. However, the increasing frequency of extreme weather events due to climate change has made hydrological forecasting more challenging. Since 2000, seasonal weather forecasts, which provide predictions for weather variables up to about seven months ahead, and their hydrological interpretation, known as Seasonal Flow Forecasts (SFFs) have gained significant global interest. This study utilises seasonal weather forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF), converting them into inflow forecasts using a hydrological model for 12 multipurpose dams in South Korea from 2011 to 2020. We then compare the performance of these SFFs with the Ensemble Streamflow Prediction (ESP). Our results indicate that while SFFs are more effective for short-term predictions of 1-2 months, ESP outperforms SFFs for long-term predictions. Seasonally, the performance of SFFs is higher in October-November but lower from December to February. Moreover, our findings demonstrate that SFFs are highly effective in quantitatively predicting dry conditions, although they tend to underestimate inflows under wet conditions.

Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝의 주면부 거동에 영향을 미치는 변수분석을 위한 수치해석)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.395-406
    • /
    • 2006
  • Drilled shafts are a common foundation solution for large concentrated loads. Such piles are generally constructed by drilling through softer soils into rock and the section of the shaft which is drilled through rock contributes most of the load bearing capacity. Drilled shafts derive their bearing capacity from both shaft and base resistance components. The length and diameter of the rock socket must be sufficient to carry the loads imposed on the pile safely without excessive settlements. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. The shaft resistance only is concerned in this study. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by the construction practices. In this study, the influences of asperity characteristics such as the heights and angles, the strength characteristics and elastic constants of surrounding rock masses and the depth and length of rock socket, et. al. on the shaft resistance of drilled shafts are investigated from elasto-plastic analyses( FLAC). Through the parametric studies, among the parameters, the vertical stress on the top layer of socket, the height of asperity and cohesion and poison's ratio of rock masses are major influence factors on the unit peak shaft resistance.

A Critical Liquefaction Resistible Characteristic of Saturated Sands Based on the Cyclic Triaxial Test Under Sinusoidal Loadings (정현하중재하 진동삼축시험에 기초한 포화사질토의 액상화 한계저항특성)

  • 최재순;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.147-158
    • /
    • 2004
  • Laboratory dynamic tests are carried out to assess the liquefaction potential of saturated sands in most countries. However, simple results such as the maximum cyclic shear stress and the number of cycles at initial liquefaction are used in the experimental assessment of liquefaction potential, even though various results can be obtained from the dynamic test. In addition, it seemed to be inefficient because more than three dynamic tests with different stress ratio have to be carried out to draw a liquefaction resistance experimental curve. To improve the present assessment method fur liquefaction potential, a new critical resistible characteristic far soil liquefaction is proposed and verified through conventional cyclic triaxial tests with Jumunjin sand. In the proposed method, various experimental data such as effective stress path, stress-strain relationship, and the change of excess pore water pressure can be used in the determination of cumulative plastic shear strains at every 1/4 cycle. Especially, the critical cumulative plastic shear strain to initiate liquefaction can be defined in a specific point called a phase change point in the effective stress path and it can be calculated from a hysteric curve of stress-strain relationship up to this point. Through this research, it is found that the proposed cumulative plastic shear strain can express the dissipated energy to resist dynamic loads and consider the realistic soil dynamic behavior of saturated sands reasonably. It is also found that the critical plastic shear strain can be used as a registible index of soils to represent the critical soil dynamic state, because it seems to include no effect of large deformation.