• Title/Summary/Keyword: 극한변형률

Search Result 141, Processing Time 0.026 seconds

Displacement Ductility Ratio of Reinforced Concrete Bridge Piers with Lap-splices (주철근 겹침이음 비율에 따른 RC교각의 연성능력 평가)

  • Park, Kwang-Soon;Ju, Hyeong-Seok;Shin, Hyun-Mock;Kim, Moon-Kyum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.1-12
    • /
    • 2008
  • As internal and external seismic experiment results, the seismic performance of RC bridge piers is largely dependent on the ratio of lap-spliced bars to all longitudinal reinforcing bars in plastic hinge regions, and confining effects of transverse reinforcements. Capacity and displacement ductility of non-seismically designed existing RC piers are reduced by lap splices in plastic hinge regions. The provision for the lap splice of longitudinal reinforcing bars was not specified in KBDS (Korean Bridge Design Specifications) before the implementation of 1992 seismic design code, but the ratio of lap-spliced bars to all longitudinal reinforcing bars in plastic hinge regions is restricted to 50% in the 2005 version of KBDS. This paper presents a seismic assessment of RC piers at lap-splicing ratios of 0%, 50%, and 100%. Through a comparison of experimental and analytic results of RC piers, we introduce an appropriate ultimate strain of confined concrete in plastic hinge regions with lap-splices, and propose a method for estimating displacement ductility ratios of non-seismically designed existing RC piers using fiber element analysis.

Experimental Evaluation for Ultimate Flexural Behaviors of PSC beams with A Corroded Tendon (PS강연선이 부식된 PSC보의 극한휨거동 평가실험)

  • Youn, Seok-Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.843-854
    • /
    • 2013
  • This paper presents experimental research work for the evaluation of ultimate flexural behaviors of prestressed concrete beams with a corroded tendon. In order to evaluate the effects of loss of prestress or loss of tendon area on the ultimate flexural strength of prestressed concrete beams, static load tests are conducted using five prestressed concrete beams. After exposing prestressing tendons in two test beams using 25mm drill bit, the exposed tendons were corroded using an accelerating corrosion equipment to simulate loss of tendon area. During the tests, steel strains, concrete strains and displacements at the center of test beams were measured, and acoustic emission measurements were conducted to detect wire fractures. Based on the test results, evaluation method for predicting flexural strength of prestressed concrete beams with corroded tendons is investigated. In addition, evaluation methods for predicting the existence of corroded tendons in post-tensioned prestressed concrete beams at service loads are discussed.

Effect of siliceous powder's particle size on the workability and strength of UHPC (석영미분말의 입자크기가 UHPC의 유동성 및 강도에 미치는 영향)

  • Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Koh, Gyung-Taek;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.441-444
    • /
    • 2008
  • Ultra high performance concrete (UHPC) in this study is composed of sand, cement, silica fume, siliceous powder, superplasticizer and steel fiber. UHPC is composed of fine mineral particles below 0.5mm in diameter. In general, siliceous powder improves the mechanical properties of concrete by physical and chemical effect. Physical effect is related with filling interior voids which weaken the mechanical properties and chemical effect with reaction of $SiO_2$ with cement hydrates in a condition of high temperature and pressure. We evaluated the effect of siliceous powder's particle size on the mechanical properties of ultra high performance concrete in air pressure and $90^{\circ}C$ steam curing condition. siliceous powder's particle size in this study is in the range of $2{\mu}m$ to $26{\mu}m$. Fluidity in a fresh concrete, compressive strength, ultimate strain, elastic modulus and flexural strength in a hardened concrete was evaluated. We could find out that the smaller siliceous powder's particle size is, the better the fluidity and strength properties.

  • PDF

Simplified Analysis and Design with Finite Element for Reinforced Concrete Shear Walls Using Limit State Equations (한계상태방정식에 의한 R/C 전단벽의 유한요소 간편 해석과 설계)

  • 박문호;조창근;이승기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.43-52
    • /
    • 2003
  • The present study is to investigate the ultimate behavior and limit state design of 2-I) R/C structures, with the changing of crack direction, and the yielding of the reinforcing steel bars, and Is to introduce an algorithm for the limit state design and analysis of 2-D R/C structures, directly from the finite element model. For the design of reinforcement in concrete the limit state design equation is incorporated into finite element algorithm to be based on the pointwise elemental ultimate behavior. It is also introduced a simplified nonlinear analysis algorithm for stress-strain relationship of R/C plane stress problem considering the cracking and its rotation in concrete and the yielding of the reinforcing steel bar. The algorithm is incorporated into the nonlinear finite element analysis. The analysis model is compared with the experimental model of R/C shear wall. In a simple design example for a shear wall, the required reinforcement ratios in each finite element is obtained from the limit state design equations.

Experimental Evaluation of Internal Blast Resistance of Prestressed Concrete Tubular Structure according to Explosive Charge Weight (프리스트레스트 콘크리트 관형 구조물의 폭발량에 따른 내부폭발저항성능에 관한 실험적 평가)

  • Choi, Ji Hun;Choi, Seung Jai;Yang, Dal Hun;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.369-380
    • /
    • 2019
  • When a extreme loading such as blast is applied to prestressed concrete (PSC) structures and infrastructures for an instantaneous time, serious property damages and human casualties occur. However, a existing design procedure for PSC structures such as prestressed containment vessel (PCCV) and gas storage tank do not consider a protective design for extreme internal blast scenario. Particularly, an internal blast is much more dangerous than that of external blast. Therefore, verification of the internal blast loading is required. In this paper, the internal blast resistance capacity of PSC member is evaluated by performing internal blast tests on RC and bi-directional PSC scaled down specimens. The applied internal blast loads were 22.68, 27.22, and 31.75 kg (50, 60, and 70 lbs) ANFO explosive charge at 1,000 mm standoff distance. The data acquisitions include blast pressure, deflection, strain, crack patterns, and prestressing force. The test results showed that it is possible to predict the damage area to the structure when internal blast loading occurs in PCCV structures.

Analysis of a Bi-directional Load Test Result on tong PHC Piles in Consideration of Residual Load (잔류하중을 고려한 장대 PHC 말뚝의 양방향 재하시험 결과해석)

  • Kim, Sung-Ryul;Chung, Sung-Gyo;Lee, Bong-Yeol
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.85-93
    • /
    • 2008
  • For long piles driven in deep clay deposits, it is difficult to estimate the ultimate bearing capacity due to large resistance induced by long embedded depth, and also the load transfer curve due to large residual load induced by negative skin friction, even with the performance of pile load tests. In this research, a hi-directional load test on a PHC pile driven in deep soft deposit was performed in order to evaluate the tip and shaft resistances separately, which are feasible to estimate the ultimate bearing capacity of the pile. Residual load of the pile was determined by continuous monitoring of pile strains after the pile installation. The true resistance and true load-movement curve of the pile were properly estimated by taking account of the residual load. A model far behavior of the shaft resistance vs. movement was also proposed, which includes the effects of residual load based on the experiment. Consequently, it was proved that the residual load should be taken into consideration for correctly analyzing load test results of piles in deep clay deposits.

Experimental Study on Static Behavior of Laterally Strengthened Spliced Prestressed Concrete Girder using Bending Moment Connector (휨연결재에 의해 횡방향으로 보강된 분절 프리스트레스트 거더의 정적거동에 관한 실험적 연구)

  • Kim, Jae Heung;Kim, Jang-Ho Jay;Kim, Sung Bae;Yi, Na Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.287-295
    • /
    • 2010
  • The main purpose of this study is to investigate the static behavior of spliced prestressed concrete girder with bending moment connector and lateral prestressing. Four (4) spliced girders and one (1) monolithic girder had been fabricated and tested to compare their static behaviors. Same geometry and materials are used to fabricate these spliced and monolithic girders. A monolithic girder and one (1) spliced girder without lateral bending connector are used as control specimens to estimate the performance of three (3) spliced girders with lateral bending connector. Deflections at the middle of girders have been measured for evaluation. Also, strains of the concrete at the middle of span and connection points have been measured. It was found from the result that laterally strengthened spliced girders showed improved ultimate strength but less stiffness compared to the monolithic girder at the ultimate state. Laterally strengthened spliced girder also showed improved strength as well as improved stiffness compared to the spliced girder without lateral strengthening.

The Stress -Strain Behavior of Asan Marine Soil (아산만 해성토의 응력 -변형률 거동)

  • Hong, Chang-Su;Jeong, Sang-Seom;Kim, Su-Il
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.17-26
    • /
    • 1996
  • The undrained behavior of Asan marine soil was investigated by using an automated triaxial testing device. The stress-strain behavior at the preand postfailure state of marine soil under undrained compression and eatension conditions was compared with the behavior of pure silt, pure clay and the overall behavior of Asan marine soil was predicted with the modified Camflay model and the bounding surface model. The marine soil sampled in Asan bay area was clayey silts with 70oA silt-30% clay content and the testing samples were prepared in both undisturbed and remolded conditions. All samples are normally consolidated with 400 kPa of effective mean confining pressure and each sample is unloaded to 200, 100, 67 kPa, respectively. And then the shear test was performed with different confining pressure. According to experimental results, there exists an unique failure line whose slope is lower than silt's and higher than clay's. It is identified that the undrained shear strength of normally consolidated samples increases after crossing the phase transformation line because of volume dilation tendency which is not seen in clay. Overconsolidated samples show different soil behavior compared with pure silt due to its tendency of change in volume. It is also found that the overall behavior of Asan marine soil cannot be predicted precisely with the modified Cam-clay model and the bounding surface model.

  • PDF

Three-dimensional Behavior and Strength Characteristics of Cubical Hal-dening Materials. (입방체경화재료의 삼차원거동 및 강도특성)

  • 강병선
    • Geotechnical Engineering
    • /
    • v.5 no.3
    • /
    • pp.19-28
    • /
    • 1989
  • This study has been carried out as a fundamental course for the analysis of the constitutive- equation for the materials like sands being hardened during Ehear. For this aim, experimentall tests with variable stress paths for the concrete material are performed using the cubical multi- axial test in which the three principle stresses are arbitrarily controlled. Stress-strain behaviors. and strength characteristics are suggested in octahedral planes. Various tests such as HC, CTC, . TC, 55 are performed. The main results summarized are as follows; 1. The order of strength from the largest to the smallest is CTC, TC, SS, and TE test. 2. The octahedral Ehear strength of concrete specimens is dependent upon the stress path(8) 3. There is a direct relation between strength and confining pressure. 4. The ultimate envelopes in the octahedral planes are non-circular-cone shaped. 5. Any ultimate criteria used to predict the strength behavior of concrete must include thin effect of the tensile stresses.

  • PDF

Postbuckling Analysis of laminated composite-stringer stiffened-Curved panels Loaded in Local compression. (국부 압축력을 받는 스트링거 보강 복합적층 만곡 판넬의 좌굴후 거동해석)

  • 김조권
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • In this paper, postbuckling behavior of laminated composite-stringer stiffened-curved panels loaded in local compression is analyzed using the finite element program developed. Postbuckling Analysis is performed in dividing the panel behavior into three basic parts. The eight node degenerated shell element is used in modelling both panel and stiffeners, and the updated Lagrangian description method based on the 2nd Piola-Kirchhoff stress tensor and the Green strain tensor is used for the nonlinear finite element formulation. The progressive failure analysis is adopted in order to grasp the failure characteristics. The postbuckling experiment of the laminated composite-stiffened-curved panel had been done to verify the finite element analysis. The buckling load and the postbuckling ultimate load are compared in parametric study.

  • PDF