최근 기상변동성 증가 및 기후변화 영향으로 수문순환과정이 과거와는 다른 양상으로 전개되고 있으며 전반적으로 극치사상의 빈도 및 강도의 증가현상이 지배적이다. 이러한 영향을 정량적으로 검토하기 위해서 경향성분석 방법 등이 도입되어 극치수문사상의 변동경향을 평가하는데 이용되고 있다. 대표적인 방법으로 선형회귀분석, Mann-Kendall 경향성 분석 등이 있으나 기본적인 가정(assumption)의 제약으로 극치수문자료 계열의 특성을 효과적으로 분석하는데 무리가 있다. 대표적이고 일반적으로 적용되는 선형회귀분석의 경우 자료가 정규분포(normal distribution)의 특성을 가질 때 유효한 방법으로서 극치수문자료와 같이 Heavy Tail를 가지는 분포특성을 표현하는 데는 무리가 따른다. 이밖에도 기존 선형회귀분석을 극치수문자료에 적용할 경우 추정된 결과를 수자원설계의 관심사항인 빈도해석 등에 직접적으로 연계시켜 해석할 수 없는 단점이 있다. 이는 자료계열의 분포특성을 정규분포로 가정하기 때문에 발생하는 문제로서 극치수문자료계열의 분포 특성을 반영할 수 있는 방법론의 개발이 필요하다. 본 연구에서는 이러한 점을 개선하기 위해서 극치분포(extreme distribution)를 선형회귀분석에 적용하는 비정상성빈도해석(nonstationary frequency analysis) 방법론의 개념을 제시하고자 한다. 비정상성빈도해석을 위해서 Bayesian 기법이 도입되며 Bayesian 기법의 특성상 관련변수들이 사후분포(posterior distribution)로 귀결되기 때문에 경향성에 대한 정량적이고 확률적인 분석이 가능한 장점이 있다. 본 연구를 통해 개발된 방법론은 국내외 주요 강수지점에 대해서 적용되며 경향성, 분포특성, 빈도별 강수량에 대한 체계적인 분석이 이루어진다.
최근 copula 모형은 여러 확률변수를 갖는 수문현상에 대해 빈도해석을 수행할 경우 결합확률분포형으로 유용하게 사용되고 있다. 하나의 자료를 확률변수로 사용하는 단변량 빈도해석에 비해 여러 수문자료를 동시에 각각 확률변수로 취하여 결합확률분포형을 추정할 수 있는 다변량 빈도해석은 수문자료의 상관성을 고려하면서 확률분포형을 추정할 수 있다는 장점이 있다. Copula 모형 중 Gumbel copula는 extreme-value 확률분포형으로 극치사상에 적합한 확률분포형이다. 본 연구에서는 Gumbel copula를 이용하여 우리나라 기상청 64개 종관기상관측소의 강우자료로부터 극치 강우사상을 추출하고, 이를 이용하여 빈도해석을 수행하였다. 극치 강우사상은 전체 강우사상 중 각 년도별로 최대강우량을 갖는 연최대강우량사상(annual maximum volume event)을 사용하였다. 각 확률변수의 주변분포형으로는 gamma, Gumbel, generalized extreme value, generalized logistic, Weibull 등 5개 확률분포형을 검토하였으며 각각 적합한 주변분포형을 적용하고 copula 모형의 매개변수는 의사최우도법(maximum pseudo-likelihood method)를 사용하여 추정하였다. 또한 추정된 copula 모형은 Cramer-von Mises 함수와 경험적 copula를 이용하여 적합도 검정을 수행하였다. 이를 통해 극치강우사상에 대하여 Gumbel copula 모형의 적용성을 검토하였으며 추정된 결합확률분포형을 이용하여 빈도별 확률강우사상을 2차원 등치선(contour line)형태로 제시하였다.
최근 이상기후현상으로 지구상의 여러 지역에서 극치 수문 사상의 발생 빈도와 강도가 날로 증가하고 있는 추세이다. 이에 대해 수공구조물의 설계를 위한 극치강우사상의 빈도해석에 있어서 적절한 확률분포모형의 적용은 매우 중요하다. 이에 수문통계분야에서는 generalized extreme value(GEV), generalized logistic(GLO), Gumbel(GUM) 모형과 같은 극치 분포를 이용한 수문통계적 특성에 대한 접근이 주로 이루어지고 있다. 하지만 우리나라 강우 사상의 경우 GEV 분포와 GUM 분포가 비교적 적합한 것으로 알려져 있지만 하나의 형상매개변수를 가지고 있어 분포 모형이 표현할 수 있는 통계적 특성에 한계를 가지고 있다. 기존의 GEV나 GUM분포로는 적절히 재현되지 않는 자료들을 분석하기 위해서 두 개의 형상매개변수를 가지는 분포형에 대한 연구가 진행되고 있다. 이에 본 연구에서는 두 개의 형상매개변수를 가지는 Burr XII 분포형의 우리나라 극한 강우자료에 대한 적용성을 평가하였다. Burr XII 분포형은 gamma나 exponential 분포 모형처럼 양의 확률변수만을 가지고, Cauchy나 Pareto 분포 모형처럼 두꺼운 꼬리(heavy-tailed distribution) 형상을 나타내기 때문에 비교적 큰 확률변수가 빈번히 나타나는 극치사상에도 적합한 것으로 알려져 있다. 이를 위해 Burr XII 분포 모형을 이용하여 우리나라 강우자료에 대해 지점빈도해석 및 지역빈도해석을 수행하고 우리나라 강우자료에 비교적 적합하다고 알려진 분포인 GEV, GLO, GUM 분포형을 통해 산정된 결과와 비교하였다.
이상기후현상으로 인해 극치 수문 사상들이 빈번히 발생함에 따라 상대적으로 높은 재현기간에 해당하는 극치 수문 사상해석에 대한 관심이 높아지고 있다. 그러나 우리나라의 경우 이러한 극치 수문 사상을 추정하기 위한 표본의 수가 부족한 실정이다. 지역빈도해석은 지점의 표본 수가 적거나 수문자료의 수집이 불가능한 미계측지점인 경우, 해당 지점과 수문학적으로 동질하다고 여겨지는 주변 지점들의 자료를 확보하여 확률수문량을 추정함으로써 상대적으로 지점빈도해석 보다 roubst한 추정값을 얻을 수 있다는 장점을 가지고 있다. 따라서 최근 확률수문량 산정 기법으로 지역빈도해석 방법에 관한 관심이 높아지고 있다. 지역구분은 지역빈도해석이 지점빈도해석과 구분될 수 있는 큰 특징이고 지역구분 결과 따라 지역의 표본 크기가 결정되기 때문에 수문학적으로 동질한 지역을 나누는 방법은 매우 중요하다고 볼 수 있다. 인공신경망은 인간의 뇌가 학습하는 방식을 모사한 통계적 모델링 기법이다. 즉, 인간의 뇌가 일정한 반복 학습을 통해 어떠한 문제의 해법을 추론하거나 예측, 또는 패턴을 인식하는 일련의 과정을 알고리즘화 하여 목적함수의 해를 찾는 방식이다. 특히, 주어진 자료들로 부터 특징을 추출하고 그 특징을 학습하여 전체 자료의 분류나 군집화를 이루는데 널리 이용되고 있다. 본 연구에서는 낙동강유역을 대상으로 인공신경망을 이용한 군집분석을 수행하고 구분된 지역을 이용하여 지역빈도해석을 수행하였다.
산업화로 인하여 지구온난화가 가속화됨에 따라 전 세계적으로 경험하지 못한 자연재해가 발생하고 있다. 한반도 역시 집중호우와 같은 극치수문사상으로 인해 매년 막대한 인명 및 재산피해가 발생하고 있다. 2010년 9월 21일 발생한 호우는 상대적으로 지역적인 편차가 큰 국지성 집중호우 형태로 인하여 국가기관시설이 밀집한 종로구 광화문 일대에 내수침수를 야기한바 있으며, 2011년 7월 26일 이후에 발생한 집중호우의 경우 연 강수량의 30% ~ 45%를 차지할 만큼의 많은 양의 비가 내리면서 우면산 산사태, 강남역 및 도림천 침수를 발생시킨 바 있다. 특히, 치수대책을 고려하지 않은 무분별한 도시개발과 여름철의 강우 집중화(연강우량의 약 70%) 때문에 수자원확보 및 수방대책에 어려움을 겪고 있는 실정이다. 보다 효율적인 이 치수 대책을 위해서는 한반도에 영향을 미치는 집중호우에 대한 정량적인 분석이 수행되어야 한다. 따라서 본 연구에서는 호우분리기법을 적용하여 집중호우만을 추출하고 한반도 집중호우의 극치사상을 시공간적인 특성 및 변동 및 경향 분석을 수행하고자 한다. 본 연구의 결과는 향후, 이 치수 대책을 고려한 도시계획 및 대책 수립에 대한 기초자료로 활용 가능 할 것으로 판단된다.
세계의 여러 국가에서 과거 발생했던 강수의 통계적 특성에서 벗어나는 극치사상이 빈번하게 관측되고 있다. 이와 같은 현상에 가장 큰 영향을 미치고 있는 요인중 하나는 지구온난화이며 실제 산업화 이후 온실가스의 증가와 더불어 극한 기상현상의 발생 빈도가 증가하였다. 현재 예상치 못한 수문사상의 발생으로 인해 수자원관리에 있어서 많은 어려움을 겪고 있으며, 특히 호우사상은 막대한 인명 및 사회적 피해를 야기하고 있다. 우리나라의 경우 계절적 특징으로 여름철에 강수가 집중되는 양상을 보이고 있으며 따라서 여름철 강수량을 예측하여 호우에 대한 대비책을 마련해야한다. 계절강수 예측은 수문, 산림, 식품, 등을 포함한 사회 경제적 파급 효과가 매우 크지만 아직 신뢰성 있는 예측은 어려운 상태이다. 또한, 발생 강도와 빈도가 큰 극한 강우는 주로 짧은 시간에 걸쳐 발생하기 때문에 예측하기가 어렵다. 최근 다양한 분야의 연구에서 AO, NAO, ENSO, PDO등과 같은 외부적 요인이 수문학적 빈도를 변화시킨다고 알려지고 있어 본 연구에서는 Bayesian 통계기법을 이용한 비정상성 빈도해석모형을 토대로 외부 기상인자에 의한 변동성을 고려할 수 있는 계절강수량 예측모형을 구축한 후 산정된 결과를 입력 자료로 하여 극치강수량을 추정할 수 있는 비정상성 Four - Parameter (4P)-Beta분포를 이용한 알고리즘을 개발하여 직접적으로 일단위 이하의 극치강수량을 상세화 시킬 수 있는 모형으로 확장하여 이를 통해 기상변동성을 다양한 시간규모에서 고려하기 위한 정보로 활용하고자 하였다.
태풍과 집중호우와 같은 극치사상은 치수적인 측면 뿐 아니라 안정적인 용수공급과 수자원의 확보, 수질 및 생물다양성 확보, 생태계의 안정성 및 복원력 향상 등에 매우 중요하나, 국외에 비해 국내연구는 매우 부족한 실정이다. 또한, 장기간의 수문 및 기상자료의 변동 및 경향, 예측 등의 많은 연구들로 인해 사실상 현실화가 된 기후변화 등의 이유로 극한 호우사상이 해를 거듭할수록 증가할 것으로 전망되고 있어 이에 대한 위험성이 대두되고 있는 실정이다. 한반도의 극치호우사상의 변화 및 양상을 보다 심도있게 평가하기 위해 한반도에 영향을 미치는 태풍 및 집중호 우을 분리하는 기법을 개발 및 적용하여 각 호우원인별 특성 변화 및 경향 분석을 수행하였으며, 한반도의 호우원인별 극치 호우사상에 영향을 미치는 해수면온도와 관련된 El Nino 패턴과 수문기상인자 등과의 상관성 분석을 수행하였다. 마지막으로 기후변화가 한반도 극치호우사상에 미치는 영향을 정량적으로 평가하고 비정상성빈도해석을 통해 미래확률강우량을 산정하였다. 본 연구의 분석결과는 향후, 미래 한반도 영향 태풍 및 집중호우의 강도 및 규모를 고려한 지역 맞춤형 치수정책 및 방재대책 수립에 대한 기초자료로 활용가능할 것으로 판단된다.
최근 기후변화로 인한 기상이변 및 이상기후로 예상하지 못한 극치사상이 빈번하게 발생하고 있다. 극치사상을 예측하기 위해 다양한 모형들이 개발되고 있으나 주로 유출의 변화 특성을 모의하는데 대부분의 연구가 초점을 맞추고 있다. 그러나 기본적으로 사용되는 강수량 자료의 정확한 추정이 기후변화 연구에서 가장 중요하다고 해도 과언이 아니다. 또한, 과거 연구들은 강수지점간의 공간상관성을 고려하지 않고 일강수량을 모의 발생시킨 후 이를 입력 자료로 강우-유출 모형에 사용하여 유역전체의 내리는 강수의 특성을 반영하지 못하였다. 이런 점들을 해결하기 위해 유역에 존재하는 실제 강우패턴을 모의 할 수 있는 다변량 Downscaling Model을 제안하였고, 기존 연구에서 극치사상을 재현해 내지 못하는 문제를 해결하기 위하여 입력 자료를 극치 값으로 변환하여 분석을 수행하였다. 즉, 본 논문에서는 실제 유역에 적용하여 모형의 타당성을 평가하고 기존 연구와 비교하여 극치 수문량의 변동 특성 등을 분석, 평가하였다.
수자원 분야에서 기후변화 관련 연구는 치수 측면 보다는 이수 측면에서 주로 이뤄지고 있다. 이는 홍수분석을 위한 시간 단위를 충족시켜주는 전지구 대기순환모형(Global Circulation Model: GCM)의 자료가 드물고, 시간 단위의 GCM 자료라 하더라도 극치값(extreme value) 표현에는 한계가 있기 때문이다. 이를 극복하기 위하여 과거 관측자료의 통계적 특성으로 극치자료의 편의(bias)를 보정하고 시간 단위로 분해하기도 한다. 하지만 이런 통계적 상세화(statistical downscaling)는 미래 기후는 과거자료와 통계적 차이가 유의하지 않음을 가정하고 있어, 미래 기후는 현재와 다를 것이라는 공감대에 는 적합하지 않다. 이와 같은 이유로 타당한 극치수문변수 결과를 얻기 위해서는 시간 단위의 고분해능(high resolution) GCM이나 지역기후모델(regional climate model)과 같은 고해상도의 미래 기후변화 자료가 필요하게 된다. 이에 국립기상연구소에서는 영국 기상청의 통합모델(UM)기반의 지역기후모델(HadGEM3)을 사용하여 50 km 및 12.5 km 격자 단위로 역학적 상세화(dynamic downscaling)를 수행하였다. 본 연구에서는 개발된 HadGEM3-RA 결과의 극치수문변수 검증을 위하여 한강유역의 관측 자료와 다양한 방법으로 비교하였다. 두 자료의 극치값을 GEV (Generalized Extreme Value) 분포에 적합(fitting)시켜 비초과확률별 극치사상과, 특정 임계값(threshold value) 이상의 극치사상 발생확률을 비교하였다. 검토 결과, HadGEM3-RA는 통계적 상세화로 구한 극치값 보다는 작았으나 기존의 지역 기후모델에 비하여 현실성 있는 극치값이 계산되었음을 확인하였다.
지점빈도해석은 해당 지점에서 기록된 수문자료를 바탕으로 확률론적 방법을 이용하여 해당 지역의 수문학적 현상을 해석하는 방법이다. 최근 이상 기후현상을 통해 극치 사상이 발생하고 있다. 이러한 극치 사상은 지점빈도해석을 이용하여 확률수문량을 추정하는데 많은 영향을 미친다. 특히 해당 지점의 표본 크기가 작을수록 이러한 영향은 좀 더 크게 반영 될 수 있다. 반면 지역빈도해석은 지점의 표본 수가 적거나 수문자료의 수집이 불가능한 미계측지점인 경우, 해당 지점과 수문학적으로 동질하다고 여겨지는 주변 지점들의 자료를 확보하여 확률수문량을 추정함으로써 상대적으로 지점빈도해석 보다 roubst한 추정값을 얻을 수 있다. 따라서 최근 확률수문량 산정 기법으로 지역빈도해석 방법에 관한 관심이 높아지고 있는 실정이다. 지역구분은 지역빈도해석이 지점빈도해석과 구분 될 수 있는 큰 특징이고 지역구분 결과 따라 지역의 표본 크기가 결정되기 때문에 수문학적으로 동질한 지역을 나누는 방법은 매우 중요하다고 볼 수 있다. 본 연구에서는 한강유역을 대상으로 인공신경망을 이용한 군집분석을 수행하고 구분된 지역을 이용하여 지역빈도 해석을 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.