• Title/Summary/Keyword: 극초음속(Hypersonic)유동

Search Result 54, Processing Time 0.028 seconds

Potential of MHD in Improving the Performance of and Generating Power in Scramjets (MHD의 스크램제트 성능 개선과 전력 생산 잠재력)

  • Parent, Bernard;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.310-313
    • /
    • 2008
  • Magnetohydrodynamics (MHD) devices have received considerable attention in recent years as a means to either improve the propulsive characteristics of hypersonic cruise missiles or as a means to generate power at low cost in drag and weight aboard scramjet powered vehicles. Based on more complete physical models than previously used, it is here argued that the use of MHD is not valuable in improving the performance of hypersonic propulsion systems through prevention of boundary layer separation or power bypass. This is due to the inevitable high amount of Joule heating accompanying MHD flow control having considerable undesired adverse effects on the engine performance. On the other hand, preliminary estimates indicate that MHD is likely to succeed in generating high amounts of power with little additional drag to feed megawatt-class energy weapons on-board scramjet engines.

  • PDF

Research Activities about Characteristics of Fuel Injection and Combustion Using Endothermic Fuel (흡열연료를 이용한 연료분사 및 연소 특성 연구동향)

  • Choi, Hojin;Lee, Hyungju;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.73-80
    • /
    • 2013
  • Endothermic fuel utilizing technology is considered as a unique practical method of hypersonic vehicle for long distance flight. Research activities about characteristics of fuel injection and combustion using cracked by endothermic reaction are reviewed. Studies on characterization of supercritical fuel injection and mixing within supersonic flow field are surveyed. Researches on combustion characteristics such as ignition delay time, laminar burning velocity and combustion efficiency at supersonic model combustor are reviewed. In addition, domestic research activities on endothermic fuel are surveyed.

Computational Study of Hypersonic Real Gas Flows Over Cylinder Using Energy Relaxation Method (에너지 완화법을 이용한 실린더 주위의 극초음속 실제기체 유동에 관한 수치해석적 연구)

  • Nagdewe, Suryakant;Kim, H.D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.216-217
    • /
    • 2008
  • In recent years, scientific community has found renewed interest in hypersonic flight research. These hypersonic vehicles undergo severe aero-thermal environment during their flight regimes. During reentry and hypersonic flight of these vehicles through atmosphere real gas effects come into play. The analysis of such hypersonic flows is critical for proper aero-thermal design of these vehicles. The numerical simulation of hypersonic real gas flows is a very challenging task. The present work emphasizes numerical simulation of hypersonic flows with thermal non-equilibrium. Hyperbolic system of equations with stiff relaxation method are identified in recent literature as a novel method of predicting long time behaviour of systems such as gas at high temperature. In present work, Energy Relaxation Method (ERM) has been considered to simulate the real gas flows. Navier-Stokes equations A numerical scheme Advection Upstream Splitting Method (AUSM) has been selected. Navier-Stokes solver along with relaxation method has been used for the simulation of real flow over a circular cylinder. Pressure distribution and heat flux over the surface of cylinder has been compared with experiment results of Hannemann. Present heat flux results over the cylinder compared well with experiment. Thus, real gas effects in hypersonic flows can be modeled through energy relaxation method.

  • PDF

A numerical study on the chemically reacting flow at highly altitude (고 고도에서의 화학적 변화를 수반하는 기체 유동에 대한 수치해석적 연구)

  • 이진호;김현우;원성연
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.202-214
    • /
    • 2001
  • In this paper the upwind flux difference splitting Navier-Stokes method has been applied to study quasi one-dimensional nozzle flow and axisymmetric sphere-cone($5^{\circ}$) flow for the perfect gas, the equilibrium and the nonequilibrium chemically reacting hypersonic flow. The effective gamma(${ \tilde{\gamma}}$), enthalpy to internal energy ratio was used to couple chemistry with the fluid mechanics for equilibrium chemically reacting air. The influences of the various altitude(30km, 50km) at Mach number(15.0, 20.0) were investigated. The equilibrium shock position was located farthest downstream when compared with those of perfect gas in a quasi one-dimensional nozzle. The equilibrium shock thickness over the blunt body region was much thinner than that of perfect gas shock.

  • PDF

A DSMC Technique for the Analysis of Chemical Reactions in Hypersonic Rarefied Flows (화학반응을 수반하는 극초음속 희박류 유동의 직접모사법 개발)

  • Chung C. H.;Yoon S. J.
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.63-70
    • /
    • 1999
  • A Direct simulation Monte-Carlo (DSMC) code is developed, which employs the Monte-Carlo statistical sampling technique to investigate hypersonic rarefied gas flows accompanying chemical reactions. The DSMC method is a numerical simulation technique for analyzing the Boltzmann equation by modeling a real gas flow using a representative set of molecules. Due to the limitations in computational requirements. the present method is applied to a flow around a simple two-dimensional object in exit velocity of 7.6 km/sec at an altitude of 90 km. For the calculation of chemical reactions an air model with five species (O₂, N₂, O, N, NO) and 19 chemical reactions is employed. The simulated result showed various rarefaction effects in the hypersonic flow with chemical reactions.

  • PDF

A Study on the Viscous Inverse Method for the High Speed Axisymmetric Body Design (고속 축대칭 비행체 설계를 위한 점성 Inverse 기법 연구)

  • Lee Young-Ki;Lee Jaewoo
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.35-43
    • /
    • 1997
  • An efficient inverse method for 1.he supersonic/hypersonic axisymmetric body design is developed for the parabolized Navier-Stokes equations. The developed method is examined numerically for three extreme testcases in the supersonic(M/sub ∞/=3.0) and hypersonic(M/sub ∞/=6.28) speeds. The first one is a negative pressure distribution near a vacuum pressure and the second one is a positive pressure distribution over the whole region of the body. The last one is the case of abrupt change of pressure distribution to zero in the forward region of the body. These testcases show the robustness of the method. By introducing a regular-falsi method and by using a not-fully converged inverse solution, the convergence behavior was greatly improved.

  • PDF

Modificaion and Performance Test for improving ability of Supersonic/Hypersonic Wind Tunnel(MAF) (초음속/극초음속 풍동(MAF)의 성능 향상을 위한 개조 및 검증)

  • Choi, Won-Hyeok;Seo, Dong-Su;Lee, Jae-Woo;Byun, Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.717-722
    • /
    • 2010
  • Supersonic/Hypersonic wind tunnel is a facility which is intended to test and to observe the physical phenomena around a model by creating supersonic flow in the test section. In designing an airplane, the wind tunnel test is demanded to analyzing aerodynamic characteristics of the model without making a prototype. In this research, the model aerodynamic facility(MAF) is modified for the purpose of increasing running time and its functionality. New pneumatic valves for remote control was installed for safety requirement, and new air tanks was installed on MAF as well. A pipe system is also modified to use those new valves and tanks, and the ceiling and side glasses of the test section are switched to ones with the larger surface area. After the MAF modification, a test is performed at Mach 2, 3 and 4. In this test, shadow graph technique, one of the flow visualization methods, is used to visualize supersonic flow field. The pressure in the settling chamber and working section at Mach 2, 3 and 4 was measured in each case. As a result, the possible model size and running time are obtained.

  • PDF

우주발사체 재진입모듈에 적용되는 열차단막 형상에 따른 특성연구

  • Park, Jin-Su
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.49-54
    • /
    • 2016
  • 본 연구에서는 유/무인 우주발사체의 재진입모듈에 적용되는 Heat-Shield(열차단막)의 형상에 따른 유동특성을 수치해석으로 분석했다. 재진입모듈이 지구의 대기권을 다시 진입하는 환경(고도 70km)을 기준으로 해석을 진행했다. 열차단막의 형상은 평판, 곡률이 다른 타원으로 나누었으며, 각 형상별 유동특성을 확인했다. 결론적으로 재진입 모듈의 형상에 따라 압력과 속도분포를 기준으로 열적인 분포를 예상했으며, 계산된 항력계수를 비교했다. 단순한 유동으로 열적 분포를 예상한 것에 한계가 있지만 대기권 재진입 모듈의 2차원 설계에 도움이 될 형상기준을 제시했다. 수치해석은 모두 Edison_CFD에서 제공하는 툴을 이용해 수행했으며, 전처리에는 e-mega (structured)을 후처리에는 e-dava를 이용했다. 해석 solver는 '정렬격자기반 2차원 압축성 유동 범용해석 소프트웨어'를 이용했다.

  • PDF

Numerical Analysis of Hypersonic Flow around a Diamond Type Wing (극초음속에 놓인 다이아몬드형 날개의 수치적 유동 해석)

  • Kim Sung-soo;Kim Chongam;Rho Oh-hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.84-89
    • /
    • 1998
  • This paper describes aerodynamic heating on a hypersonic vehicle. For this purpose, the 2-D, and 3-D equilibrium code are developed. In order to obtain an accurate solution, AUSMPW+ is used for spatial discretization. Curve fitting data in NASA Reference Publication 1181, 1260 are used to calculate equilibrium properties. To observe aerodynamic heating phenomena, Reynolds number parametric study for diamond airfoil is done, 3-D full Navier-Stokes equation is computed and wall temperature distribution data are obtained. Analyzing these results, we conclude that Reynolds number and secondary flow are important factors in aerodynamic heating.

  • PDF

A Numerical Study on Real Gas Effect due to High Temperature and Speed Flow (고온 고속유동으로 인한 실제 기체효과의 수치해석적 연구)

  • 송동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2431-2442
    • /
    • 1994
  • In this paper the efficient space marching Viscous Shock Layer and Parabolized Navier-Stokes method have been applied to study the complex 3-D hypersonic equilibrium chemically reacting flowfilelds over sphere-cone($10^{\circ}$) vehicle at low angles of attack($0^{\circ}~5^{\circ}), Mach 20, and an altitude of 35km. The current bluntbody/afterbody space marching numerical method predicts the complex flowfields accurately and efficiently even on a small computer. The shock thickness from equilibrium air model is thinner than that from the perfect gas model. The windside wall heat-transfer rate, pressure and skin friction force were increased significantly when compared with those of leeside. The CA, CN, CM were increased almost linearly with the angle of attack in this region. The wall pressure, heat transfer, skin friction and axial force coeffient from equilibrium model were much higher than those from perfect gas model. The center of pressure moved forward with the increase of angle of attack.