• Title/Summary/Keyword: 극저온 저장탱크

Search Result 31, Processing Time 0.02 seconds

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (I) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출시 온도강하율에 대한 연구 (I))

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Han, Sang-Yeop;Cho, In-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.54-61
    • /
    • 2007
  • Propellant pressurization system in liquid rocket propulsion system plays a role supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Generally for the propulsion system, which requires high thrust and is consisted of cryogenic propellant the pressurant is stored at high density and high pressure to reduce the weight of pressurant tanks, which are placed inside of cryogenic propellant tank. That is called cryogenic storage pressurization system. This study investigates the temperature variation of pressurant at the time when the pressurant is coming out of pressurant tank experimentally as well as numerically. Fluids used in this study are air and liquid oxygen as outer fluid and gaseous nitrogen and gaseous helium as pressurant respectively.

위성 발사체 추진제 가압용 열교환기 기초 설계

  • 이희준;한상엽;정용갑;길경섭;하성업;김병훈
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.74-74
    • /
    • 2004
  • 액체추진제를 사용하는 위성 발사체의 경우 추진제탱크에 저장된 추진제를 추력을 발생하는 연소실에 공급하기 위하여 헬륨 등의 가압제를 사용한다. 본 연구에서는 액체추진제 로켓엔진의 산화제인 극저온의 액체산소를 저장하고 있는 탱크 내부에 설치된 별도의 탱크에 저장된 극저온/고압의 헬륨을 고온으로 열팽창 시켜 추진제 탱크로 재유입하여 추진제를 가압하는 시스템에 사용되는 가압제 열팽창용 열교환기의 개발을 위한 기초 설계를 수행하였다. (중략)

  • PDF

A study on designing a level gauge for cryogenic liquefied storage vessel by using a differential pressure sensor (차압센서를 이용한 극저온 액화가스 저장용기의 액면측정장치 설계에 관한 연구)

  • Choi, Dong-Joon;Lim, Hyung-Il;Doh, Deog-Hee;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.384-390
    • /
    • 2013
  • The sizes of cryogenic vessels and storage tanks are becoming bigger due to strong demands from semiconductor and LCD industry as well as high-tech electronic industry. Conventional level and pressure gauges used for cryogenic vessels were analog types which made exact measurement difficult for the remained quantity at lower levels due to their poor accuracy. In this study, a design for a digital type gas level gauge which can measure the pressure and level inside of the cryogenic liquefied gas storage tanks has been proposed by using a differential pressure sensor, in which the measured data are monitored by a host PC and are transferred to a mobile printer for data confirmation at local station.

Required Pressurant Mass for Cryogenic Propellant Tank with Pressurant Temperature Variation (가압가스 온도에 따른 극저온 추진제탱크 가압가스 요구량)

  • Kwon, Oh-Sung;Kim, Byung-Hun;Cho, In-Hyun;Ko, Young-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1202-1208
    • /
    • 2010
  • The prediction of the required pressurant mass for maintaining the pressure of propellant tanks during propellant feeding is an important issue in designing pressurization system. The temperature of pressurant fed into propellant tank is the critical factor in the required pressurant mass and is one of the most crucial design parameters in the development of pressurization system including designing the weight of pressurant tanks and the size of heat exchanger. Hence a series of propellant drainage tests by pressurizing propellant stored in a cryogenic propellant tank have been performed with measuring the temperature distribution inside ullage and the required pressurant mass according to the temperature condition of pressurant. Results shows that the required pressurant mass decreases as the temperature of pressurant increases. However, the rate of the actual pressurant mass to the ideal required pressurant mass increases.

Comparison of the Internal Pressure Behavior of Liquid Hydrogen Fuel Tanks Depending on the Liquid Hydrogen Filling Ratio (액체수소 충전 비율에 따른 액체수소 연료탱크의 내부 압력 거동 비교)

  • Dongkuk Choi;Sooyong Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.8-16
    • /
    • 2024
  • Because hydrogen has very low density, a different storage method is required to store the same amount of energy as fossil fuel. One way to increase the density of hydrogen is through liquefaction. However, since the liquefied temperature of hydrogen is extremely low at -252 ℃, it is easily vaporized by external heat input. When liquid hydrogen is vaporized, a self-pressurizing phenomenon occurs in which the pressure inside the hydrogen tank increases, so when designing the tank, this rising pressure must be carefully predicted. Therefore, in this paper, the internal pressure of a cryogenic liquid fuel tank was predicted according to the liquid hydrogen filling ratio. A one-dimensional thermodynamic model was applied to predict the pressure rise inside the tank. The thermodynamic model considered heat transfer, vaporization of liquid hydrogen, and fuel discharging. Finally, it was confirmed that there was a significant difference in pressure behavior and maximum rise pressure depending on the filling ratio of liquid hydrogen in the fuel tank.

LN2 storage test and damage analysis for a Type 3 cryogenic propellant tank (타입 3 극저온 추진제 탱크의 액체질소저장 시험 및 파손 분석)

  • Kang, Sang-Guk;Kim, Myung-Gon;Park, Sang-Wuk;Kong, Cheol-Won;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.592-600
    • /
    • 2007
  • Nowadays, researches for replacing material systems for cryotanks by composites have been being performed for the purpose of lightweight launch vehicle. In this paper, a type 3 propellant tank, which is composed of the composite developed for cryogenic use and an aluminum liner, was fabricated and tested considering actual operating environment, that is, cryogenic temperature and pressure. For this aim, liquid nitrogen (LN2) was injected into the fabricated tank and in turn, gaseous nitrogen (GN2) was used for pressurization. During this test procedure, strains and temperatures on the tank surface were measured. The delamination between hoop layer and helical one, was detected during the experiment. Several attempts were followed to investigate the cause analytically and experimentally. Thermo-elastic analysis in consideration of the progressive failure was done to evaluate the failure index. Experimental approach through a LN2 immersion test of composite/aluminum ring specimens suitable for simulating the Type 3 tank structure.

Study on the Temperature Characteristic of Pressurization System Using Cryogenic Helium Gas (극저온 헬륨가스 가압시스템에 대한 온도특성 연구(I))

  • Chung Yonggahp;Kim Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.66-73
    • /
    • 2005
  • The pressurization system in a liquid rocket propulsion system provides a controlled gas pressure in the ullage space of the vehicle propellant tanks. It is advantage to employ a hot gas heat exchanger in the pressurization system to increase the specific volume of the pressurant and thereby reduce over-all system weight. A significant improvement in pressurization-system performance can be achieved, particularly in a cryogenic system, where the gas supply is stored inside the cryogenic propellant tank. In this study liquid nitrogen was used instead of liquid oxygen as a simulant. The temperature characteristic of cryogenic pressurant is very important to develop some components in pressurization system. Numerical modeling and test data were studied using SINDA/FLUINT Program and PTF(Propellant-feeding Test facility).

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (II) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출시 온도강하율에 대한 연구(II))

  • Chung, Yong-Gahp;Kim, Yong-Wook;Kim, Yoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.279-284
    • /
    • 2008
  • Propellant pressurization system in liquid rocket propulsion system plays a role in supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank, which is placed inside of cryogenic propellant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Previous investigation dealt with thermal correlation of pressurant and external fluid at room temperature. This study investigates the temperature variation of cryogenic pressurant (GHe) at the time when the pressurant is coming out of pressurant tank, which is submerged in a liquid oxygen, experimentally as well as numerically.

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (II) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출 시 온도강하율에 대한 연구 (II))

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.58-64
    • /
    • 2007
  • Propellant pressurization system in liquid rocket propulsion system plays a role supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank, which is placed inside of cryogenic propellant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Previous investigation dealt with thermal correlation of pressurant and external fluid at room temperature. This study investigates the temperature variation of cryogenic pressurant (GHe) at the time when the pressurant is coming out of pressurant tank, which is submerged in a liquid oxygen, experimentally as well as numerically.

  • PDF

Structural Response of Underground LNG Storage Tank (Parameter Study for Design Conditions) (지하식 LNG 저장탱크의 설계 조건에 따른 거동분석)

  • 곽효경;이광모;송종영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.219-235
    • /
    • 2002
  • This paper deals with parametric studies of the structural response of underground LNG storage tanks according to change in design conditions. In the design of underground LNG storage tank, it is requited to determine the optimal tank shape and dimension to represent a more improved structural behavior under many loading conditions and load combinations. Consequently, main factors which affect to the structural response of LNG storage tanks from planning and design up to maintenance, are investigated, and the differences in structural behavior due to those factors are analyzed. On the basis of the obtained results item parametric studies, a guideline for a more reasonable design is introduced.