• Title/Summary/Keyword: 극심한 소성변형

Search Result 7, Processing Time 0.018 seconds

Frictional Effect during Equal Channel Angular Pressing(ECAP) with Pure-Zr (Pure-Zr의 ECAP공정에서 마찰의 영향)

  • 박상석;권기환;채수원;권숙인;김명호;황선근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.409-412
    • /
    • 2000
  • Much research efforts have been made on the structure and properties of metals deformed to severe plastic deformation (SPD). Being deformed to SPD, ultra-fine grains (UFG) are usually formed, and UFG structure exhibits fundamental differences in original physical properties. One method often used to obtain SPD is equal channel angular pressing (ECAP). In order for this technique to be exploited, it is important to understand the deformation behavior during the ECAP processing with respect to friction. The finite element method (FEM) has been used to investigate this issue.

  • PDF

Analysis of Deformation Behavior due to Die Angles during Equal Channel Angular Pressing (ECAP) with Pure-Zirconium (Pure-Zirconium의 ECAP 공정에서의 금형의 교차각과 만곡각에 따른 재료의 변형거동해석)

  • Kwon, G.H.;Chae, S.W.;Kwun, S.I.;Kim, M.H.;Hwang, S.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.747-753
    • /
    • 2000
  • There has been a number of investigations in recent years reporting the results obtained on the structure and properties of metals deformed to severe plastic deformation (SPD). Being deformed to SPD, ultra-fine grains (UFG) are usually formed, and UFG structure exhibits fundamental differences in original physical properties. One method often used to obtain SPD is equal channel angular pressing (ECAP). In order for this technique to be exploited, it is important to understand the deformation behavior during the ECAP processing and relationship to the configuration of die. The finite element method (FEM) has been used to investigate this issue. It has been found that the plastic deformation is sensitive to the channel angle and material properties and is not uniform across the width of the specimen and the pressing load is relative to deformation during the ECAP processing.

  • PDF

An Experimental Study on Flexural Behavior of One-Way Concrete Slabs Using Structural Welded Wire-Fabric (구조화 용접철강을 사용한 일방향 슬래브의 휨 거동에 관한 실험적 연구)

  • 허갑수;윤영호;양지수;김석중;정헌수
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.169-179
    • /
    • 1994
  • Recently the construction of residential buildings faces many difficulties due to the shortage of building materials and works. Simplifying the stage of processing and assembling reinforcing rods and increasing the efficiency of them in reinforced concrete construction can be used to settle the difficulties. In the respect, structural wire-fabric and loop wire-fabric is utilized. The purpose of this study, on condition of being $210kg/cm^2$ concrete strength, is to analyze the structural and flexural properties of one-way concrete slabs by testing with different reinforcing type, tensile steel ratio based with minimum steel ratio, boundary condition and splice length which affect the maximum width of crack and ductility factor. From the test results, the ductility factor is approved that the slabs using deformed bar were much better than that using wire-fabric, and 30D of splice length was appropriate in the slabs as splice length. In the control of the maximum crack width the slabs using wire-fabric and loop wire-fabric were much better than that using deformed bar.

A Study on Plastic Fatigue of Structural Steel Elements under Cyclic Loading (반복하중을 받는 강구조 요소의 소성피로에 관한 연구)

  • Park, Yeon Soo;Park, Sun Joon;Kang, Sung Hoo;Yoon, Young Phil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.193-204
    • /
    • 1997
  • In order to quantify the relationships of the important physical factors relating failure to strong earthquake loading, the plastic fatigue problems for structural components under repeated loading were reviewed first. A new concept of very low cycle fatigue failure for structural components under severe cyclic excitations as in strong earthquakes was represented. Also, an experimental study was made of the very low cycle fatigue failure of structural steel elements. It was attempted to realize the ultimate failure in the course of loading repetitions of the order of several to twenty. The test specimen had a form of rectangular plate, representing a thin-plated element in a steel member as wide-flange cross section. It was subjected to uniaxial loading repeatedly, until complete failure takes place after undergoing inelastic buckling, plastic elongation and/or their combination. It was seen as a result that the state of the ultimate failure is closely related to the maximum strain at the extreme fiber in the cross section.

  • PDF

Experimental Investigation on Deformation Capacity of CFT Column to H-Steel Beam Connections (콘크리트충전 각형기둥-H형강보 접합부의 변형능력에 관한 실험적 연구)

  • Kim, Young Ju;Chae, Young Suk;Shin, Kyung Jae;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.113-121
    • /
    • 2004
  • A test program was conducted on full-scale steel moment connections constructed using a T-stiffener. In the T-stiffener connection, the beam-to-column connection was reinforced with the horizontal and vertical element of the T-stiffener to resist moment under severe cyclic loads. A total of five specimens were tested in this study together with a concrete-filled tubular(CFT) column(${\sqsubset}-500{\times}500{\times}12$) and a steel beam($H-506{\times}201{\times}11{\times}19$). For the specimens, the T-stiffener was combined with RBS (also known as "Dog-bone") detail or Horizontal Element Hole(HEH) detail constructed to enhance deformation capacity. The test program showed excellent seismic performance for specimens constructed with an RBS or an HEH. except the specimens had brittle failure of VE. The test results also showed that the connections all developed maximum moments at the face of the column. Such moments were at least 15% and as much as 36% larger than the plastic moment capacity of the beam. based on the actual yield stress of the beam steel.

Comparative Study on Description Schemes to Perform Finite Element Analysis in Incremental Forming Process (점진성형의 공정평가를 위한 유한요소해석에서 묘사기법 적용에 관한 비교 연구)

  • Park, Jun-Soo;Byon, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1073-1080
    • /
    • 2012
  • Incremental forming is a cold working process in which a small part of the material is being deformed and the area of local deformation is moving over the entire material. In this paper, we study description schemes to perform finite element analysis for the incremental forming. The selected description schemes to examine are the Lagrangian description and the arbitrary Lagrangian-Eulerian (ALE) description. The sliding boundary scheme coupled with ALE is also examined to overcome the distortion problems of elements on the contact surface. Results show that the ALE description with the sliding boundary scheme is most favorable in overcoming the distortion of elements. This description leads to make the simulation continued to the final stage of the incremental forming. On the other hand, the Lagrangian description as well as the original ALE description makes the elements much distorted and the analysis is stopped long before arriving at the final shape of deformation.

Development of a Coupled Eulerian-Lagrangian Finite Element Model for Dissimilar Friction Stir Welding (Coupled Eulerian-Lagrangian기법을 이용한 이종 마찰교반용접 해석모델 개발)

  • Lim, Jae-Yong;Lee, Jinho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.7-13
    • /
    • 2019
  • This study aims to develop a FE Model to simulate dissimilar friction stir welding and to address its potential for fundamental analysis and practical applications. The FE model is based on Coupled Eulerian-Lagrangian approach. Multiphysics systems are calculated using explicit time integration algorithm, and heat generations by friction and inelastic heat conversion as well as heat transfer through the bottom surface are included. Using the developed model, friction stir welding between an Al6061T6 plate and an AZ61 plate were simulated. Three simulations are carried out varying the welding parameters. The model is capable of predicting the temperature and plastic strain fields and the distribution of void. The simulation results showed that temperature was generally greater in Mg plates and that, as a rotation speed increase, not the maximum temperature of Mg plate increased, but did the temperature of Al plate. In addition, the model could predict flash defects, however, the prediction of void near the welding tool was not satisfactory. Since the model includes the complex physics closely occurring during FSW, the model possibly analyze a lot of phenomena hard to discovered by experiments. However, practical applications may be limited due to huge simulation time.