• Title/Summary/Keyword: 그림자 탐지

Search Result 35, Processing Time 0.033 seconds

Automatic Detection Approach of Ship using RADARSAT-1 Synthetic Aperture Radar

  • Yang, Chan-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.163-168
    • /
    • 2008
  • Ship detection from satellite remote sensing is a crucial application for global monitoring for the purpose of protecting the marine environment and ensuring marine security. It permits to monitor sea traffic including fisheries, and to associate ships with oil discharge. An automatic ship detection approach for RADARSAT Fine Synthetic Aperture Radar (SAR) image is described and assessed using in situ ship validation information collected during field experiments conducted on August 6, 2004. Ship detection algorithms developed here consist of five stages: calibration, land masking, prescreening, point positioning, and discrimination. The fine image was acquired of Ulsan Port, located in southeast Korea, and during the acquisition, wind speeds between 0 m/s and 0.4 m/s were reported. The detection approach is applied to anchoring ships in the anchorage area of the port and its results are compared with validation data based on Vessel Traffic Service (VTS) radar. Our analysis for anchoring ships, above 68 m in length (LOA), indicates a 100% ship detection rate for the RADARSAT single beam mode. It is shown that the ship detection performance of SAR for smaller ships like barge could be higher than the land-based radar. The proposed method is also applied to estimate the ship's dimensions of length and breadth from SAR radar cross section(RCS), but those values were comparatively higher than the actual sizes because of layover and shadow effects of SAR.

  • PDF

Evaluation of the Utility of SSG Algorithm for Image Restoration of Landsat-8 (Landsat 8호 영상 복원을 위한 SSG 기법 활용성 평가)

  • Lee, Mi Hee;Lee, Dalgeun;Yu, Jung Hum;Kim, Jinyoung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1231-1244
    • /
    • 2020
  • Landsat satellites are representative optical satellites that have observed the Earth's surface for a long-term, and are suitable for long-term changes such as disaster preparedness/recovery monitoring, land use change, change detection, and time series monitoring. In this paper, clouds and cloud shadows were detected using QA bands to detect and remove clouds simply and efficiently. Then, the missing area of the experimantal image is restorated through the SSG algorithm, which does not directly refer to the pixel value of the reference image, but performs restoration to the pixel value in the Experimental image. Through this study, we presented the possibility of utilizing the modified SSG algorithm by quantitatively and qualitatively evaluating information on variousl and cover conditions in the thermal wavelength band as well as the visible wavelength band observing the surface.

Region-based Building Extraction of High Resolution Satellite Images Using Color Invariant Features (색상 불변 특징을 이용한 고해상도 위성영상의 영역기반 건물 추출)

  • Ko, A-Reum;Byun, Young-Gi;Park, Woo-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.75-87
    • /
    • 2011
  • This paper presents a method for region-based building extraction from high resolution satellite images(HRSI) using integrated information of spectral and color invariant features without user intervention such as selecting training data sets. The purpose of this study is also to evaluate the effectiveness of the proposed method by applying to IKONOS and QuickBird images. Firstly, the image is segmented by the MSRG method. The vegetation and shadow regions are automatically detected and masked to facilitate the building extraction. Secondly, the region merging is performed for the masked image, which the integrated information of the spectral and color invariant features is used. Finally, the building regions are extracted using the shape feature for the merged regions. The boundaries of the extracted buildings are simplified using the generalization techniques to improve the completeness of the building extraction. The experimental results showed more than 80% accuracy for two study areas and the visually satisfactory results obtained. In conclusion, the proposed method has shown great potential for the building extraction from HRSI.

Damage Detection and Classification System for Sewer Inspection using Convolutional Neural Networks based on Deep Learning (CNN을 이용한 딥러닝 기반 하수관 손상 탐지 분류 시스템)

  • Hassan, Syed Ibrahim;Dang, Lien-Minh;Im, Su-hyeon;Min, Kyung-bok;Nam, Jun-young;Moon, Hyeon-joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.451-457
    • /
    • 2018
  • We propose an automatic detection and classification system of sewer damage database based on artificial intelligence and deep learning. In order to optimize the performance, we implemented a robust system against various environmental variations such as illumination and shadow changes. In our proposed system, a crack detection and damage classification method using a deep learning based Convolutional Neural Network (CNN) is implemented. For optimal results, 9,941 CCTV images with $256{\times}256$ pixel resolution were used for machine learning on the damaged area based on the CNN model. As a result, the recognition rate of 98.76% was obtained. Total of 646 images of $720{\times}480$ pixel resolution were extracted from various sewage DB for performance evaluation. Proposed system presents the optimal recognition rate for the automatic detection and classification of damage in the sewer DB constructed in various environments.

Detection of Surface Water Bodies in Daegu Using Various Water Indices and Machine Learning Technique Based on the Landsat-8 Satellite Image (Landsat-8 위성영상 기반 수분지수 및 기계학습을 활용한 대구광역시의 지표수 탐지)

  • CHOUNG, Yun-Jae;KIM, Kyoung-Seop;PARK, In-Sun;CHUNG, Youn-In
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Detection of surface water features including river, wetland, reservoir from the satellite imagery can be utilized for sustainable management and survey of water resources. This research compared the water indices derived from the multispectral bands and the machine learning technique for detecting the surface water features from he Landsat-8 satellite image acquired in Daegu through the following steps. First, the NDWI(Normalized Difference Water Index) image and the MNDWI(Modified Normalized Difference Water Index) image were separately generated using the multispectral bands of the given Landsat-8 satellite image, and the two binary images were generated from these NDWI and MNDWI images, respectively. Then SVM(Support Vector Machine), the widely used machine learning techniques, were employed to generate the land cover image and the binary image was also generated from the generated land cover image. Finally the error matrices were used for measuring the accuracy of the three binary images for detecting the surface water features. The statistical results showed that the binary image generated from the MNDWI image(84%) had the relatively low accuracy than the binary image generated from the NDWI image(94%) and generated by SVM(96%). And some misclassification errors occurred in all three binary images where the land features were misclassified as the surface water features because of the shadow effects.

Cloud Detection and Restoration of Landsat-8 using STARFM (재난 모니터링을 위한 Landsat 8호 영상의 구름 탐지 및 복원 연구)

  • Lee, Mi Hee;Cheon, Eun Ji;Eo, Yang Dam
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.861-871
    • /
    • 2019
  • Landsat satellite images have been increasingly used for disaster damage analysis and disaster monitoring because they can be used for periodic and broad observation of disaster damage area. However, periodic disaster monitoring has limitation because of areas having missing data due to clouds as a characteristic of optical satellite images. Therefore, a study needs to be conducted for restoration of missing areas. This study detected and removed clouds and cloud shadows by using the quality assessment (QA) band provided when acquiring Landsat-8 images, and performed image restoration of removed areas through a spatial and temporal adaptive reflectance fusion (STARFM) algorithm. The restored image by the proposed method is compared with the restored image by conventional image restoration method throught MLC method. As a results, the restoration method by STARFM showed an overall accuracy of 89.40%, and it is confirmed that the restoration method is more efficient than the conventional image restoration method. Therefore, the results of this study are expected to increase the utilization of disaster analysis using Landsat satellite images.

U-Net Cloud Detection for the SPARCS Cloud Dataset from Landsat 8 Images (Landsat 8 기반 SPARCS 데이터셋을 이용한 U-Net 구름탐지)

  • Kang, Jonggu;Kim, Geunah;Jeong, Yemin;Kim, Seoyeon;Youn, Youjeong;Cho, Soobin;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1149-1161
    • /
    • 2021
  • With a trend of the utilization of computer vision for satellite images, cloud detection using deep learning also attracts attention recently. In this study, we conducted a U-Net cloud detection modeling using SPARCS (Spatial Procedures for Automated Removal of Cloud and Shadow) Cloud Dataset with the image data augmentation and carried out 10-fold cross-validation for an objective assessment of the model. Asthe result of the blind test for 1800 datasets with 512 by 512 pixels, relatively high performance with the accuracy of 0.821, the precision of 0.847, the recall of 0.821, the F1-score of 0.831, and the IoU (Intersection over Union) of 0.723. Although 14.5% of actual cloud shadows were misclassified as land, and 19.7% of actual clouds were misidentified as land, this can be overcome by increasing the quality and quantity of label datasets. Moreover, a state-of-the-art DeepLab V3+ model and the NAS (Neural Architecture Search) optimization technique can help the cloud detection for CAS500 (Compact Advanced Satellite 500) in South Korea.

A Study of Development and Application of an Inland Water Body Training Dataset Using Sentinel-1 SAR Images in Korea (Sentinel-1 SAR 영상을 활용한 국내 내륙 수체 학습 데이터셋 구축 및 알고리즘 적용 연구)

  • Eu-Ru Lee;Hyung-Sup Jung
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1371-1388
    • /
    • 2023
  • Floods are becoming more severe and frequent due to global warming-induced climate change. Water disasters are rising in Korea due to severe rainfall and wet seasons. This makes preventive climate change measures and efficient water catastrophe responses crucial, and synthetic aperture radar satellite imagery can help. This research created 1,423 water body learning datasets for individual water body regions along the Han and Nakdong waterways to reflect domestic water body properties discovered by Sentinel-1 satellite radar imagery. We created a document with exact data annotation criteria for many situations. After the dataset was processed, U-Net, a deep learning model, analyzed water body detection results. The results from applying the learned model to water body locations not involved in the learning process were studied to validate soil water body monitoring on a national scale. The analysis showed that the created water body area detected water bodies accurately (F1-Score: 0.987, Intersection over Union [IoU]: 0.955). Other domestic water body regions not used for training and evaluation showed similar accuracy (F1-Score: 0.941, IoU: 0.89). Both outcomes showed that the computer accurately spotted water bodies in most areas, however tiny streams and gloomy areas had problems. This work should improve water resource change and disaster damage surveillance. Future studies will likely include more water body attribute datasets. Such databases could help manage and monitor water bodies nationwide and shed light on misclassified regions.

A Study on Automatic Target Recognition Using SAR Imagery (SAR 영상을 이용한 자동 표적 식별 기법에 대한 연구)

  • Park, Jong-Il;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1063-1069
    • /
    • 2011
  • NCTR(Non-Cooperative Target Recognition) and ATR(Automatic Target Recognition) are methodologies to identify military targets using radar, optical, and infrared images. Among them, a strategy to recognize ground targets using synthetic aperature radar(SAR) images is called SAR ATR. In general, SAR ATR consists of three sequential stages: detection, discrimination and classification. In this paper, a modification of the polar mapping classifier(PMC) to identify inverse SAR(ISAR) images has been made in order to apply it to SAR ATR. In addition, a preprocessing scheme can mitigate the effect from the clutter, and information on the shadow is employed to improve the classification accuracy.

Validation of multi-temporal MODIS surface reflectance product using invariant target (불변성 지표물을 이용한 시계열 MODIS 지표 반사율 자료의 검증)

  • Kang, Sung-Jin;Kim, Sun-Hwa;Yoon, Jong-Suk;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.105-110
    • /
    • 2009
  • 현재 NASA에서 제공되는 MODIS 지표반사율자료(MOD09)는 MODIS영상을 이용한 각종 주제자료들의 중요한 입력 자료로 사용되고 있으며, MODIS 지표반사율 자료에 대한 객관적인 검증연구가 필요한 실정이다. 따라서 본 연구에서는 MOD09의 검증관련 초기 연구로서, 남한에 분포하는 불변성 타겟(invariant target)을 대상으로 2006년 일별 250m MODIS 지표반사율자료(MOD09GQK)자료의 객관적 검증을 시도하였다. 우선, MOD09 QA(Quality Assurance)자료를 이용하여 구름의 영향을 받은 화소를 제거한 후, 수치지도와 토지피복도를 이용하여 정의한 불변성 타겟에 해당되는 MOD09영상의 화소값을 추출하였다. 이와 같이 추출된 시계열 MOD09GHK영상의 화소값에 1차 회귀분석을 적용하여 이상 반사율 값을 탐지하고, 그 원인을 분석하였다. 검증 결과 나지지역에 대해서 0.0186의 RMSE값이 나타났으며, 인공물의 경우 0.2891의 RMSE값을 보였다. 발생된 이상 화소를 살펴보면, 구름, 그림자, 눈에 영향에 의해 발생한 것도 있으며, 원인을 알 수 없는 이상 화소들도 분포하였다. 향후 연구에서는 한반도 전역의 MODIS 시계열 반사율영상을 대상으로 MODIS 대기보정알고리즘과 입력인자의 적합성을 판단하기 위한 연구를 진행할 예정이다.

  • PDF