• Title/Summary/Keyword: 그림자 탐지

Search Result 33, Processing Time 0.028 seconds

A Comparartive Analysis on Techniques of Shadow Extraction in a Single High Resolution Image. (고해상도 단영상에서의 그림자 추출기법 비교)

  • Song, Woo-Seok;Byun, Young-Gi;Kim, Yong-Min;Yu, Ki-Yun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.127-132
    • /
    • 2007
  • 위성영상 기술의 발달과 고해상도 위성영상의 해상도 규제가 완화됨에 따라 건물의 높이 정보를 획득하는데 있어 고해상도 위성영상의 그림자 정보를 이용하는 연구들이 활발히 수행되어지고 있다. 그림자 정보를 이용하여 건물 높이 정보를 획득하는 연구의 정확도를 높이기 위해서는 정확한 건물의 그림자 탐지가 선행되어야 한다. 따라서 본 논문에서는 단영상을 이용한 그림자 탐지기법인 임계값법(Thresholding), 영상분류법, 영역확장법(Region Growing)을 건물의 그림자 탐지에 적용하여 각 기법의 장단점과 정확도를 평가하였다. 영상에서 수동으로 건물의 그림자를 디지타이징한 참조 자료와 기법들을 적용하여 탐지한 결과 영상을 시각적으로 비교하였고, 오차행렬(Confusion Matrix)을 이용한 전체정확도(Accuracy), F-measure, AOR(Area Overlap Ratio)을 이용하여 정량적인 정확도평가를 수행하였다. 실험결과 영역확장법을 적용한 경우 시각적 정량적으로 가장 높은 정확도를 보였으며, 영상분류법을 적용한 경우 시각적으로는 임계값을 적용한 경우보다 좋은 결과를 보였으나 정량적으로는 가장 낮은 정확도를 보였다.

  • PDF

Shadow Detection and Correction Method for Urban Area using KOMPSAT-3 Image (KOMPSAT-3 영상을 활용한 도심지 그림자 영역의 탐지 및 보정 방법)

  • Park, Sung-Hwan;Lee, Gyu-Seok;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1197-1213
    • /
    • 2017
  • This study was carried out to correct shadow area in urban area on KOMPSAT-3 satellite image. For this study, we analyzed characteristics of the shadow area represented by artificial structures in urban area. The proposed shadow correction method divides shadow area into umbra and penumbra areas according to intensity of darkness. The umbra area was detected through the histogram analysis and the statistical method of the NIR image, and then penumbra area and the sunlit area were detected from around the detected umbra area. The correction of the detected umbra and penumbra area were performed by applying the linear correlation correction method. As a result, it was confirmed that the proposed shadow correction method was visually performed well. Quantitative analysis was performed through profile analysis. It is proved that proposed method is useful for shadow area correction.

Terrain Shadow Detection in Satellite Images of the Korean Peninsula Using a Hill-Shade Algorithm (음영기복 알고리즘을 활용한 한반도 촬영 위성영상에서의 지형그림자 탐지)

  • Hyeong-Gyu Kim;Joongbin Lim;Kyoung-Min Kim;Myoungsoo Won;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.637-654
    • /
    • 2023
  • In recent years, the number of users has been increasing with the rapid development of earth observation satellites. In response, the Committee on Earth Observation Satellites (CEOS) has been striving to provide user-friendly satellite images by introducing the concept of Analysis Ready Data (ARD) and defining its requirements as CEOS ARD for Land (CARD4L). In ARD, a mask called an Unusable Data Mask (UDM), identifying unnecessary pixels for land analysis, should be provided with a satellite image. UDMs include clouds, cloud shadows, terrain shadows, etc. Terrain shadows are generated in mountainous terrain with large terrain relief, and these areas cause errors in analysis due to their low radiation intensity. previous research on terrain shadow detection focused on detecting terrain shadow pixels to correct terrain shadows. However, this should be replaced by the terrain correction method. Therefore, there is a need to expand the purpose of terrain shadow detection. In this study, to utilize CAS500-4 for forest and agriculture analysis, we extended the scope of the terrain shadow detection to shaded areas. This paper aims to analyze the potential for terrain shadow detection to make a terrain shadow mask for South and North Korea. To detect terrain shadows, we used a Hill-shade algorithm that utilizes the position of the sun and a surface's derivatives, such as slope and aspect. Using RapidEye images with a spatial resolution of 5 meters and Sentinel-2 images with a spatial resolution of 10 meters over the Korean Peninsula, the optimal threshold for shadow determination was confirmed by comparing them with the ground truth. The optimal threshold was used to perform terrain shadow detection, and the results were analyzed. As a qualitative result, it was confirmed that the shape was similar to the ground truth as a whole. In addition, it was confirmed that most of the F1 scores were between 0.8 and 0.94 for all images tested. Based on the results of this study, it was confirmed that automatic terrain shadow detection was well performed throughout the Korean Peninsula.

Object-based Building Change Detection Using Azimuth and Elevation Angles of Sun and Platform in the Multi-sensor Images (태양과 플랫폼의 방위각 및 고도각을 이용한 이종 센서 영상에서의 객체기반 건물 변화탐지)

  • Jung, Sejung;Park, Jueon;Lee, Won Hee;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.989-1006
    • /
    • 2020
  • Building change monitoring based on building detection is one of the most important fields in terms of monitoring artificial structures using high-resolution multi-temporal images such as CAS500-1 and 2, which are scheduled to be launched. However, not only the various shapes and sizes of buildings located on the surface of the Earth, but also the shadows or trees around them make it difficult to detect the buildings accurately. Also, a large number of misdetection are caused by relief displacement according to the azimuth and elevation angles of the platform. In this study, object-based building detection was performed using the azimuth angle of the Sun and the corresponding main direction of shadows to improve the results of building change detection. After that, the platform's azimuth and elevation angles were used to detect changed buildings. The object-based segmentation was performed on a high-resolution imagery, and then shadow objects were classified through the shadow intensity, and feature information such as rectangular fit, Gray-Level Co-occurrence Matrix (GLCM) homogeneity and area of each object were calculated for building candidate detection. Then, the final buildings were detected using the direction and distance relationship between the center of building candidate object and its shadow according to the azimuth angle of the Sun. A total of three methods were proposed for the building change detection between building objects detected in each image: simple overlay between objects, comparison of the object sizes according to the elevation angle of the platform, and consideration of direction between objects according to the azimuth angle of the platform. In this study, residential area was selected as study area using high-resolution imagery acquired from KOMPSAT-3 and Unmanned Aerial Vehicle (UAV). Experimental results have shown that F1-scores of building detection results detected using feature information were 0.488 and 0.696 respectively in KOMPSAT-3 image and UAV image, whereas F1-scores of building detection results considering shadows were 0.876 and 0.867, respectively, indicating that the accuracy of building detection method considering shadows is higher. Also among the three proposed building change detection methods, the F1-score of the consideration of direction between objects according to the azimuth angles was the highest at 0.891.

Development of Cloud and Shadow Detection Algorithm for Periodic Composite of Sentinel-2A/B Satellite Images (Sentinel-2A/B 위성영상의 주기합성을 위한 구름 및 구름 그림자 탐지 기법 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.989-998
    • /
    • 2021
  • In the utilization of optical satellite imagery, which is greatly affected by clouds, periodic composite technique is a useful method to minimize the influence of clouds. Recently, a technique for selecting the optimal pixel that is least affected by the cloud and shadow during a certain period by directly inputting cloud and cloud shadow information during period compositing has been proposed. Accurate extraction of clouds and cloud shadowsis essential in order to derive optimal composite results. Also, in the case of an surface targets where spectral information is important, such as crops, the loss of spectral information should be minimized during cloud-free compositing. In thisstudy, clouds using two spectral indicators (Haze Optimized Tranformation and MeanVis) were used to derive a detection technique with low loss ofspectral information while maintaining high detection accuracy of clouds and cloud shadowsfor cabbage fieldsin the highlands of Gangwon-do. These detection results were compared and analyzed with cloud and cloud shadow information provided by Sentinel-2A/B. As a result of analyzing data from 2019 to 2021, cloud information from Sentinel-2A/B satellites showed detection accuracy with an F1 value of 0.91, but bright artifacts were falsely detected as clouds. On the other hand, the cloud detection result obtained by applying the threshold (=0.05) to the HOT showed relatively low detection accuracy (F1=0.72), but the loss ofspectral information was minimized due to the small number of false positives. In the case of cloud shadows, only minimal shadows were detected in the Sentinel-2A/B additional layer, but when a threshold (= 0.015) was applied to MeanVis, cloud shadowsthat could be distinguished from the topographically generated shadows could be detected. By inputting spectral indicators-based cloud and shadow information,stable monthly cloud-free composited vegetation index results were obtained, and in the future, high-accuracy cloud information of Sentinel-2A/B will be input to periodic cloud-free composite for comparison.

A Real-time Interactive Shadow Avatar with Facial Emotions (감정 표현이 가능한 실시간 반응형 그림자 아바타)

  • Lim, Yang-Mi;Lee, Jae-Won;Hong, Euy-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.4
    • /
    • pp.506-515
    • /
    • 2007
  • In this paper, we propose a Real-time Interactive Shadow Avatar(RISA) which can express facial emotions changing as response of user's gestures. The avatar's shape is a virtual Shadow constructed from the real-time sampled picture of user's shape. Several predefined facial animations overlap on the face area of the virtual Shadow, according to the types of hand gestures. We use the background subtraction method to separate the virtual Shadow, and a simplified region-based tracking method is adopted for tracking hand positions and detecting hand gestures. In order to express smooth change of emotions, we use a refined morphing method which uses many more frames in contrast with traditional dynamic emoticons. RISA can be directly applied to the area of interface media arts and we expect the detecting scheme of RISA would be utilized as an alternative media interface for DMB and camera phones which need simple input devices, in the near future.

  • PDF

CNN-based Shadow Detection Method using Height map in 3D Virtual City Model (3차원 가상도시 모델에서 높이맵을 이용한 CNN 기반의 그림자 탐지방법)

  • Yoon, Hee Jin;Kim, Ju Wan;Jang, In Sung;Lee, Byung-Dai;Kim, Nam-Gi
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.55-63
    • /
    • 2019
  • Recently, the use of real-world image data has been increasing to express realistic virtual environments in various application fields such as education, manufacturing, and construction. In particular, with increasing interest in digital twins like smart cities, realistic 3D urban models are being built using real-world images, such as aerial images. However, the captured aerial image includes shadows from the sun, and the 3D city model including the shadows has a problem of distorting and expressing information to the user. Many studies have been conducted to remove the shadow, but it is recognized as a challenging problem that is still difficult to solve. In this paper, we construct a virtual environment dataset including the height map of buildings using 3D spatial information provided by VWorld, and We propose a new shadow detection method using height map and deep learning. According to the experimental results, We can observed that the shadow detection error rate is reduced when using the height map.

Segmentation of underwater images using morphology for deep learning (딥러닝을 위한 모폴로지를 이용한 수중 영상의 세그먼테이션)

  • Ji-Eun Lee;Chul-Won Lee;Seok-Joon Park;Jea-Beom Shin;Hyun-Gi Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.370-376
    • /
    • 2023
  • In the underwater image, it is not clear to distinguish the shape of the target due to underwater noise and low resolution. In addition, as an input of deep learning, underwater images require pre-processing and segmentation must be preceded. Even after pre-processing, the target is not clear, and the performance of detection and identification by deep learning may not be high. Therefore, it is necessary to distinguish and clarify the target. In this study, the importance of target shadows is confirmed in underwater images, object detection and target area acquisition by shadows, and data containing only the shape of targets and shadows without underwater background are generated. We present the process of converting the shadow image into a 3-mode image in which the target is white, the shadow is black, and the background is gray. Through this, it is possible to provide an image that is clearly pre-processed and easily discriminated as an input of deep learning. In addition, if the image processing code using Open Source Computer Vision (OpenCV)Library was used for processing, the processing speed was also suitable for real-time processing.

A Study on the Pixel based Change Detection in Urban Area (도심지역 화소기반 변화탐지 적용에 관한 연구)

  • Kwon, Seung-Joon;Shin, Sung-Woong;Yoon, Chang-Rak
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.06a
    • /
    • pp.202-205
    • /
    • 2008
  • 건물이 밀집된 도심지역을 촬영한 두 시기 항공영상에 화소기반 변화탐지 기법인 영상대차(Image Differencing), 영상중첩 분석(Image Overlay)기법을 적용하여 넓은 대도심지역의 효율적인 변화탐지 가능성을 살펴보았다. 영상대차(Image Differencing) 기법은 알고리즘이 간단하고 정량적인 분석이 가능한 결과를 얻을 수 있다는 장점이 있으나 고층건물밀집지역을 보여주고 있는 고해상도 항공영상의 적용과정에서는 폐색영역, 그림자 등으로 인해 정확한 변화탐지 결과를 보여주지 못했다. 영상중첩 분석(Image Overlay)기법은 한 번에 두 개 또는 세 개의 영상을 비교 분석할 수 있다는 장점이 있으나 직관적인 분석만을 제공하고 정량적인 분석이 불가능하였다. 현재의 화소기반 영상변화탐지 기술수준으로는 고해상도 공간영상에 대한 신뢰도 높은 변화탐지 분석결과를 얻을 수 없다는 것을 확인하였다.

  • PDF

Evaluating Applicability of Photochemical Reflectance Index using Airborne-Based Hyperspectral Image: With Shadow Effect and Spectral Bands Characteristics (항공 초분광 영상을 이용한 광화학반사지수 이용 가능성 평가: 그림자 영향 및 대체 밴드를 중심으로)

  • Ryu, Jae-Hyun;Shin, Jung Il;Lee, Chang Suk;Hong, Sungwook;Lee, Yang-Won;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.507-519
    • /
    • 2017
  • The applications of NDVI (Normalized Difference Vegetation Index) as a vegetation index has been widely used to understand vegetation biomass and physiological activities. However, NDVI is not suitable way for monitoring vegetation stress because it is less sensitive to change in physiological state than biomass. PRI (Photochemical Reflectance Index) is well developed to present physiological activities of vegetation, particularly high-light-stress condition, and it has been adopted in several satellites to be launched in the future. Thus, the understanding of PRI performance and the development of analysis method will be necessary. This study aims to interpret the characteristics of light-stress-sensitive PRI in shadow areas and to evaluate the PRI calculated by other wavelengths (i.e., 488.9 nm, 553.6 nm, 646.9 nm, and 668.4 nm) instead of 570 nm that used in original PRI. Using airborne-based hyperspectral image, we found that PRI values were increased in shadow detection due to the reduction of high light induced physiological stress. However, the qualities of both PRI and NDVI data were dramatically decreased when the shadow index (SI) exceeded the threshold (SI<25). In addition, the PRI calculated using by 553.6 nm had best correlation with original PRI. This relationship was improved by multiple regression analysis including reflectances of RED and NIR. These results will be helpful to the understanding of physiological meaning on the application of PRI.