• Title/Summary/Keyword: 그림자영역추출

Search Result 64, Processing Time 0.028 seconds

An Effective Shadow Elimination Method Using Adaptive Parameters Update (적응적 매개변수 갱신을 통한 효과적인 그림자 제거 기법)

  • Kim, Byeoung-Su;Lee, Gwang-Gook;Yoon, Ja-Young;Kim, Jae-Jun;Kim, Whoi-Yul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.11-19
    • /
    • 2008
  • Background subtraction, which separates moving objects in video sequences, is an essential technology for object recognition and tracking. However, background subtraction methods are often confused by shadow regions and this misclassification of shadow regions disturbs further processes to perceive the shapes or exact positions of moving objects. This paper proposes a method for shadow elimination which is based on shadow modeling by color information and Bayesian classification framework. Also, because of dynamic update of modeling parametres, the proposed method is able to correspond adaptively to illumination changes. Experimental results proved that the proposed method can eliminate shadow regions effectively even for circumstances with varying lighting condition.

Shadow Classification for Detecting Vehicles in a Single Frame (단일 프레임에서 차량 검출을 위한 그림자 분류 기법)

  • Lee, Dae-Ho;Park, Young-Tae
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.11
    • /
    • pp.991-1000
    • /
    • 2007
  • A new robust approach to detect vehicles in a single frame of traffic scenes is presented. The method is based on the multi-level shadow classification, which has been shown to have the capability of extracting correct shadow shapes regardless of the operating conditions. The rationale of this classification is supported by the fact that shadow regions underneath vehicles usually exhibit darker gray level regardless of the vehicle brightness and illuminating conditions. Classified shadows provide string clues on the presence of vehicles. Unlike other schemes, neither background nor temporal information is utilized; thereby the performance is robust to the abrupt change of weather and the traffic congestion. By a simple evidential reasoning, the shadow evidences are combined with bright evidences to locate correct position of vehicles. Experimental results show the missing rate ranges form 0.9% to 7.2%, while the false alarm rate is below 4% for six traffic scenes sets under different operating conditions. The processing speed for more than 70 frames per second could be obtained for nominal image size, which makes the real-time implementation of measuring the traffic parameters possible.

Efficient Learning and Classification for Vehicle Type using Moving Cast Shadow Elimination in Vehicle Surveillance Video (차량 감시영상에서 그림자 제거를 통한 효율적인 차종의 학습 및 분류)

  • Shin, Wook-Sun;Lee, Chang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Generally, moving objects in surveillance video are extracted by background subtraction or frame difference method. However, moving cast shadows on object distort extracted figures which cause serious detection problems. Especially, analyzing vehicle information in video frames from a fixed surveillance camera on road, we obtain inaccurate results by shadow which vehicle causes. So, Shadow Elimination is essential to extract right objects from frames in surveillance video. And we use shadow removal algorithm for vehicle classification. In our paper, as we suppress moving cast shadow in object, we efficiently discriminate vehicle types. After we fit new object of shadow-removed object as three dimension object, we use extracted attributes for supervised learning to classify vehicle types. In experiment, we use 3 learning methods {IBL, C4.5, NN(Neural Network)} so that we evaluate the result of vehicle classification by shadow elimination.

Gastric Cancer Extraction of Electronic Endoscopic Images using IHb and HSI Color Information (IHb와 HSI 색상 정보를 이용한 전자 내시경의 위암 추출)

  • Kim, Kwang-Baek;Lim, Eun-Kyung;Kim, Gwang-Ha
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.265-269
    • /
    • 2007
  • In this paper, we propose an automatic extraction method of gastric cancer region from electronic endoscopic images. We use the brightness and saturation of HSI in removing noises by illumination and shadows by the crookedness occurring in the endoscopic process. We partition the image into several areas with similar pigments of hemoglobin using IHb. The candidate areas for gastric cancer are defined as the areas that have high hemoglobin pigments and high value in every channel of RGB. Then the morphological characteristics of gastric cancer are used to decide the target region. In experiment, our method is sufficiently accurate in that it correctly identifies most cases (18 out of 20 cases) from real electronic endoscopic images, obtained by expert endoscopists.

Finger Counting Algorithm in the Hand with Stuck Fingers (붙어 있는 손가락을 가진 손에서 손가락 개수 알고리즘)

  • Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1892-1897
    • /
    • 2017
  • This paper proposes a finger counting algorithm for a hand with stuck fingers. The proposed algorithm is based on the fact that straight line type shadows are inevitably generated between fingers. It divides the hand region into the thumb region and the four fingers region for effective shadow detection, and generates an edge image in each region. Projection curves are generated by appling a line detection and a projection technique to each edge image, and the peaks of the curves are detected as candidates for finger shadows. And then peaks due to finger shadows are extracted from them and counted. In the finger counting experiment on hand images expressing various shapes with stuck fingers, the counting success rate is from 83.3% to 100% according to the number of fingers, and 93.1% on the whole. It also shows that if hand images are generated under controlled conditions, the failure cases can be sufficiently improved.

A Real-time Interactive Shadow Avatar with Facial Emotions (감정 표현이 가능한 실시간 반응형 그림자 아바타)

  • Lim, Yang-Mi;Lee, Jae-Won;Hong, Euy-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.4
    • /
    • pp.506-515
    • /
    • 2007
  • In this paper, we propose a Real-time Interactive Shadow Avatar(RISA) which can express facial emotions changing as response of user's gestures. The avatar's shape is a virtual Shadow constructed from the real-time sampled picture of user's shape. Several predefined facial animations overlap on the face area of the virtual Shadow, according to the types of hand gestures. We use the background subtraction method to separate the virtual Shadow, and a simplified region-based tracking method is adopted for tracking hand positions and detecting hand gestures. In order to express smooth change of emotions, we use a refined morphing method which uses many more frames in contrast with traditional dynamic emoticons. RISA can be directly applied to the area of interface media arts and we expect the detecting scheme of RISA would be utilized as an alternative media interface for DMB and camera phones which need simple input devices, in the near future.

  • PDF

A Technique to Detect the Shadow Pixels of Moving Objects in the Images of a Video Camera (비디오 카메라 영상 내 동적 물체의 그림자 화소 검출 기법)

  • Park Su-Woo;Kim Jungdae;Do Yongtae
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1314-1321
    • /
    • 2005
  • In video surveillance and monitoring (VSAM), extracting foreground by detecting moving regions is the most fundamental step. The foreground extracted, however, includes not only objects in motion but also their shadows, which may cause errors in following video image processing steps. To remove the shadows, this paper presents a new technique to determine shadow pixels in the foreground image of a VSAM camera system. The proposed technique utilizes a fact that the effect of shadowing to each pixel is different defending on its brightness in a background image when determining shadow pixels unlike existing techniques where unified decision criteria are used to all pixels. Such an approach can easily accommodate local features in an image and hold consistent Performance even in changing environment. In real experiments, the proposed technique showed better results compared with an existing technique.

  • PDF

Calculation of Buildlng Heights from a Single Satellite Image (고해상도 단일 위성영상으로부터 건물높이값 추출)

  • 이병환;김정희;박경환
    • Spatial Information Research
    • /
    • v.7 no.1
    • /
    • pp.89-101
    • /
    • 1999
  • This paper represents methods to calculate heights of buildings by estimating their shadow lengths in a single and panchromatic image of the KVR-1000 camera system Shadows are identified Com brightness intensity of each pixel, and their lengths are measured. Two methods are implemented to estimate heights from shadows. One method is to use a ratio of shadow s lengths with respect to heights of reference buildings measured on site. The other method uses sun elevation angles calculated from various camera s parameters at the exposure time. The estimated heights of 20 buildings are compared with heights measured on site, and the RMS errors for each method are 1.70m and 1.75m, respectively. When a resampling method to enhance identification of shadows is used and their lengths are accordingly re-calculated, the estimated errors for each method are significantly reduced to 1.17m and 1.16m, respectively. Meanwhile, effects of land slope on shadows can be hardly obtained unless detailed DTM(digital terrain model) are available, and they introduce additional errors up to 25m.

  • PDF

Region-based Building Extraction of High Resolution Satellite Images Using Color Invariant Features (색상 불변 특징을 이용한 고해상도 위성영상의 영역기반 건물 추출)

  • Ko, A-Reum;Byun, Young-Gi;Park, Woo-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.75-87
    • /
    • 2011
  • This paper presents a method for region-based building extraction from high resolution satellite images(HRSI) using integrated information of spectral and color invariant features without user intervention such as selecting training data sets. The purpose of this study is also to evaluate the effectiveness of the proposed method by applying to IKONOS and QuickBird images. Firstly, the image is segmented by the MSRG method. The vegetation and shadow regions are automatically detected and masked to facilitate the building extraction. Secondly, the region merging is performed for the masked image, which the integrated information of the spectral and color invariant features is used. Finally, the building regions are extracted using the shape feature for the merged regions. The boundaries of the extracted buildings are simplified using the generalization techniques to improve the completeness of the building extraction. The experimental results showed more than 80% accuracy for two study areas and the visually satisfactory results obtained. In conclusion, the proposed method has shown great potential for the building extraction from HRSI.

Improved Skin Color Extraction Based on Flood Fill for Face Detection (얼굴 검출을 위한 Flood Fill 기반의 개선된 피부색 추출기법)

  • Lee, Dong Woo;Lee, Sang Hun;Han, Hyun Ho;Chae, Gyoo Soo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.7-14
    • /
    • 2019
  • In this paper, we propose a Cascade Classifier face detection method using the Haar-like feature, which is complemented by the Flood Fill algorithm for lossy areas due to illumination and shadow in YCbCr color space extraction. The Cascade Classifier using Haar-like features can generate noise and loss regions due to lighting, shadow, etc. because skin color extraction using existing YCbCr color space in image only uses threshold value. In order to solve this problem, noise is removed by erosion and expansion calculation, and the loss region is estimated by using the Flood Fill algorithm to estimate the loss region. A threshold value of the YCbCr color space was further allowed for the estimated area. For the remaining loss area, the color was filled in as the average value of the additional allowed areas among the areas estimated above. We extracted faces using Haar-like Cascade Classifier. The accuracy of the proposed method is improved by about 4% and the detection rate of the proposed method is improved by about 2% than that of the Haar-like Cascade Classifier by using only the YCbCr color space.