• 제목/요약/키워드: 그리디 이웃해 생성

검색결과 6건 처리시간 0.018초

Greedy-based Neighbor Generation Methods of Local Search for the Traveling Salesman Problem

  • Hwang, Junha;Kim, Yongho
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.69-76
    • /
    • 2022
  • 순회 외판원 문제는 가장 유명한 조합 최적화 문제 중 하나이다. 지금까지 이 문제를 해결하기 위해 많은 메타휴리스틱 탐색 알고리즘들이 제안되어 왔으며, 그중의 하나가 지역 탐색이다. 지역 탐색에 있어서 매우 중요한 요소 중 하나가 이웃해 생성 방법으로 주로 역전(inversion)과 같은 무작위 기반 이웃해 생성 방법들이 사용되어 왔다. 본 논문에서는 4가지의 새로운 그리디 기반 이웃해 생성 방법들을 제안한다. 3가지 방법은 그리디 삽입 휴리스틱을 기반으로 하는데, 선택된 도시들을 하나씩 차례로 현재 가장 좋은 위치로 삽입한다. 나머지 하나는 그리디 회전을 기반으로 한다. 제안된 방법들은 대표적인 지역 탐색 알고리즘인 first-choice 언덕 오르기 탐색과 시뮬레이티드 어닐링에 적용된다. 실험을 통해 제안된 그리디 기반 방법들이 기존의 무작위 기반 방법들보다 성능이 우수함을 확인하였다. 또한 일부 그리디 기반 방법들은 기존의 지역 탐색 기법들보다 더 우수함을 확인하였다.

부하평준화를 위한 Tabu 탐색의 효율적 이웃해 생성 방법

  • 강병호;조민숙;류광렬
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.429-434
    • /
    • 2003
  • 본 논문은 작업일정계획에서 부하평준화 문제를 효율적으로 해결하기 위하여 tabu 탐색을 적용함에 있어서 확률적 선별에 기반하여 이웃해를 생성하는 방법을 제시한다. 이웃해 생성은 부하평준화를 위해 일정을 조정할 대상 작업을 선택하는 단계와 선택된 작업에 대해 일정 조정의 방향을 결정하는 단계로 구분된다. 확률적 선별에 기반한 이웃해 생성은 우선 무작위로 추출된 작업에 대해서 탐색의 질을 개선시킬 수 있는 가능성에 대한 추정치에 따라 확률을 부여하고, 이 확률에 기반하여 선택여부를 결정함으로써 이웃해를 선별하는 방법이다. 실제 현장의 부하평준화 문제를 대상으로 이웃해 생성 방법으로 무작위 방법, 그리디(greedy) 방법과의 비교 실험을 통해 확률적 선별에 기반한 이웃해 생성 방법의 성능을 검증하였다.

  • PDF

A Combined Greedy Neighbor Generation Method of Local Search for the Traveling Salesman Problem

  • Yongho Kim;Junha Hwang
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.1-8
    • /
    • 2024
  • 순회 외판원 문제(TSP)는 잘 알려진 조합 최적화 문제 중 하나이다. 지역 탐색은 TSP를 해결하기 위한 한 가지 방법으로 사용되어 왔다. Greedy Random Insertion(GRI)은 지역 탐색을 위한 효과적인 이웃해 생성 방법으로 알려져 있다. GRI는 현재해로부터 일부 도시들을 무작위로 선택하고 그 도시들을 한 번에 하나의 도시만 고려하여 현재 부분해의 최적 위치로 삽입한다. 본 논문에서는 먼저 Full Greedy Insertion(FGI)이라는 또 다른 그리디 이웃해 생성 방법을 제안한다. FGI는 GRI와 마찬가지로 삽입 위치를 하나씩 결정하되 남은 모든 도시들을 한꺼번에 고려하여 결정한다. 그리고 본 논문에서는 GRI와 FGI를 결합하는 방법을 제시한다. 결합 방법에서는 시뮬레이티드 어닐링 내에서 매 반복 시 GRI 또는 FGI를 무작위로 선택하여 실행한다. 실험 결과에 의하면, FGI 단독으로는 성능이 매우 우수한 것은 아니다. 그러나 결합 방법은 GRI를 포함한 기존의 지역 탐색 방법들보다 우수한 성능을 발휘함을 확인하였다.

부하평준화 문제에서 국지적 탐색의 효율향상을 위한 이웃해 선정 기법 (A Neighbor Selection Technique for Improving Efficiency of Local Search in Load Balancing Problems)

  • 강병호;조민숙;류광렬
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권2호
    • /
    • pp.164-172
    • /
    • 2004
  • 일반적으로 국지적 탐색에서 최적해를 획득할 가능성은 가능한 많은 이웃해를 생성하면서 반복 수를 늘릴수록 높아지나 긴 탐색시간이 소요된다. 따라서 한정된 시간 내에 최적해를 효율적으로 찾기 위해서는. 적절한 수의 이웃해를 생성하되, 탐색의 질을 높일 수 있는 이웃해를 선별해서 생성하는 것이 요구된다. 본 논문에서는 국지적 탐색기법을 적용하여 부하평준화 문제를 해결할 때, 탐색의 효율을 향상시킬 수 있는 이웃해 선정 기법을 제안하고, 실세계 데이타를 대상으로 그 성능을 검증하였다. 본 논문에서 제안하는 이웃해 선정 기법은 확률적 선별에 기반 한 방법으로서, 탐색의 질을 개선시킬 가능성에 대한 추정치를 기준으로 부여된 확률에 따라 이웃해를 선별하여 생성하는 기법이다. 대상 문제에 국지적 탐색기법으로 tabu 탐색과 simulated annealing를 적용한 실험에서, 무작위 또는 그리디 선별에 기반 한 방법보다 우수한 성능을 보임을 확인하였다.

클래스 영역의 다차원 구 생성에 의한 프로토타입 기반 분류 (Prototype based Classification by Generating Multidimensional Spheres per Class Area)

  • 심세용;황두성
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.21-28
    • /
    • 2015
  • 본 논문에서는 최근접 이웃 규칙을 이용한 프로토타입 선택 기반 분류 학습을 제안하였다. 각 훈련 데이터가 대표하는 클래스 영역을 구(sphere)로 분할하는데 최근접 이웃 규칙을 적용시키며, 구의 내부는 동일 클래스 데이터들만 포함하도록 한다. 프로토타입은 구의 중심점이며 프로토타입의 반지름은 가장 인접한 다른 클래스 데이터와 가장 먼 동일 클래스 데이터의 중간 거리 값으로 결정한다. 그리고 전체 훈련 데이터를 대표하는 최소의 프로토타입 집합을 선택하기 위해 집합 덮개 최적화를 이용하여 프로토타입 선택 문제를 변형시켰다. 제안하는 프로토타입 선택 방법은 클래스 별 적용이 가능한 그리디 알고리즘으로 설계되었다. 제안하는 방법은 계산 복잡도가 높지 않으며, 대규모 훈련 데이터에 대한 병렬처리의 가능성이 높다. 프로토타입 기반 분류 학습은 선택된 프로토타입 집합을 새로운 훈련 데이터 집합으로 사용하고 최근접 이웃 규칙을 적용하여 테스트 데이터의 클래스를 예측한다. 실험에서 제안하는 프로토타입 기반 분류기는 최근접 이웃 학습, 베이지안 분류 학습과 다른 프로토타입 분류기에 비해 일반화 성능이 우수하였다.

최근접 이웃 규칙 기반 프로토타입 선택과 편의-분산을 이용한 성능 평가 (Nearest-neighbor Rule based Prototype Selection Method and Performance Evaluation using Bias-Variance Analysis)

  • 심세용;황두성
    • 전자공학회논문지
    • /
    • 제52권10호
    • /
    • pp.73-81
    • /
    • 2015
  • 이 논문은 프로토타입 선택 방법을 제안하고, 편의-분산 분해를 이용하여 최근접 이웃 알고리즘과 프로토타입 기반 분류 학습의 일반화 성능 비교 평가에 있다. 제안하는 프로토타입 분류기는 클래스 영역 내에서 가변 반지름을 이용한 다차원 구를 정의하고, 적은 수의 프로토타입으로 구성된 새로운 훈련 데이터 집합을 생성한다. 최근접 이웃 분류기는 새 훈련 집합을 이용하여 테스트 데이터의 클래스를 예측한다. 평균 기대 오류의 편의와 분산 요소를 분해하여 최근접 이웃 규칙, 베이지안 분류기, 고정 반지름을 이용한 프로토타입 선택 방법, 제안하는 프로토타입 선택 방법의 일반화 성능을 비교한다. 실험에서 제안하는 프로토타입 분류기의 편의-분산 변화 추세는 모든 훈련 데이터를 사용하는 최근접 이웃 알고리즘과 비슷한 편의-분산 추세를 보였으며, 프로토타입 선택 비율은 전체 데이터의 평균 약 27.0% 이하로 나타났다.