• 제목/요약/키워드: 그래프 패턴

검색결과 195건 처리시간 0.024초

협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구 (The Research on Recommender for New Customers Using Collaborative Filtering and Social Network Analysis)

  • 신창훈;이지원;양한나;최일영
    • 지능정보연구
    • /
    • 제18권4호
    • /
    • pp.19-42
    • /
    • 2012
  • 고객이 상품을 구매하는 패턴이 빠르게 변화하고 있다. 오프라인에서 고객이 직접 상품을 보고, 체험한 후 구매하던 패턴이 TV홈쇼핑, 인터넷 쇼핑 등 고객이 편리한 장소에서 자유롭게 구매하는 방법으로 확산되었다. 이처럼 구매 가능한 상품의 범위는 점점 더 다양해지고 있지만 이로 인하여 고객이 상품을 구매할 때 생기는 번거로움은 더욱 커지고 있다. 오프라인에서는 물건을 직접보고 구매하기 때문에 반품율이 낮은 반면에 온라인 구매 물품은 배송과 환불 등에서 복잡한 일들이 많이 발생한다. 온라인을 통해서 물건을 구매할 때 상품에 대한 사전 정보는 매우 한정적이며 실제로 물건을 구매했을 경우 고객이 생각했던 것과 다를 수 있다. 이러한 결과는 결국 고객의 불만족 및 구매취소로 이어진다. 또한 TV홈쇼핑이나 인터넷 쇼핑 등을 통해서 물건을 구매할 때 고객들은 이미 상품을 구매한 고객의 리뷰에도 관심을 기울이고 있다. 좋은 평가를 받은 상품은 더 많은 매출로 이어질 수 있기 때문에 기업은 이에 관심을 기울일 필요가 있다. 고객의 욕구를 만족시킬 수 있는 적절한 상품을 추천해 주고 이를 구매로 연결시키는 것은 기업의 이윤 창출과 직결되기 때문에 그 중요성이 강조된다. 고객을 위한 추천방법은 베스트셀러기반 추천방법, 인구통계 정보기반 추천방법, 최소질의대상 상품결정방법, 내용필터링기법, 협력필터링기법 등이 존재하며, 이에 대한 많은 연구가 활발하게 진행되고 있다. 그러나 위의 방법들을 신규고객에게 적용하는 것에는 문제가 발생할 수 있다. 신규고객은 상품에 대한 과거 구매이력이 존재하지 않기 때문이다. 이를 해결하기 위한 방안으로 가입 시, 고객의 인구통계적 정보나 선호도에 대한 응답을 유도하는 방법을 활용할 수 있다. 그러나 고객이 이에 대한 번거로움을 느낄 수도 있으며, 불완전한 답변을 하게 되면 추천의 정확도는 감소한다. 최근 이미 상품을 구매한 고객의 리뷰 및 기업에서 추천하는 제품에 의존하는 고객들이 증가하면서 이를 악용하는 사례도 자주 등장한다. 결국 추천에 대한 고객들의 신뢰는 감소하게 될 것이다. 따라서 좀 더 명확한 방식의 추천시스템이 절실하며, 이것이 개선된다면 는 곧 고객들의 신뢰 증가로 이어질 것이다. 본 연구에서는 협력필터링기법과 사회연결망기법의 중심성을 결합한 분석을 시도하였다. 중심성은 신규고객의 선호도를 기존고객들의 데이터를 통하여 유추하기 위하여 활용되는 정보이다. 기존 연구들에서는 기존고객들의 구매 가운데 구매성향이 유사한 고객들의 정보에 초점을 맞추고 있으며 구매성향이 다른 고객들의 정보에 대한 분석은 이루어지고 있지 않다. 그러나 이처럼 구매성향이 서로 다른 고객들의 정보를 활용한다면 추천의 정확성이 더 향상되지 않을까 하는 점을 기반으로 데이터들을 다양한 방식으로 분석하였다. 연구에 사용된 데이터는 미네소타대학의 GroupLens Research Project팀이 협력필터링기법을 통하여 영화를 추천하기 위해 만든 MovieLens의 데이터이다. 이는 1,684편의 영화에 대한 선호도를 943명이 응답한 정보로 총 100,000개의 데이터가 있다. 이를 시간 순으로 구분하여 초기 50,000개의 데이터를 기존고객의 데이터로, 후기 50,000개의 데이터를 신규고객의 데이터로 사용하였다. 이 때, 신규고객과 기존고객은 연구자가 임의로 구분한 것이다. 따라서 신규고객이라고 표현되는 고객의 데이터는 실제로 추천시스템을 통해 정보를 제공받은 고객이라고는 볼 수 없다. 그러나 현실적으로 실제 신규고객의 데이터를 수집하는 것이 쉽지 않기 때문에 전체 고객의 정보를 시간 순으로 구분하고 신규고객으로 분류한 것임을 밝혀둔다. 제시된 추천시스템은 [+]집단 추천시스템, [-]집단 추천시스템, 통합 추천시스템으로 총 3가지이다. [+]집단 추천시스템은 기존의 연구들과 유사한 방식으로 유사도가 높은 고객들을 신규고객의 이웃고객으로 분석하였다. 유사도가 높다는 것은 다른 고객들과 상품 구매에 대한 성향이 유사한 것을 의미한다. 또한 [-]집단 추천시스템은 유사도가 낮고 다른 고객들과 상품의 구매패턴이 반대에 가까운 고객들의 데이터를 활용하였으며, 통합 추천시스템은 [+]집단 추천시스템과 [-]집단 추천시스템을 결합한 방식이다. [+]집단 추천시스템과 [-]집단 추천시스템에서 각각 추천된 영화 가운데 중복되는 영화만을 신규고객에게 추천하는 방식이다. 다양한 방법의 시도를 통하여 적절한 추천시스템을 찾고, 추천시스템의 정확도를 향상시키는데 그 목적이 있다. 활용된 데이터의 분석 결과는 통합 추천시스템이 정확도가 가장 높았으며 [-]집단 추천시스템, [+]집단 추천시스템의 순인 것으로 나타났다. 이는 통합 추천시스템이 가장 효율적일 것이라는 연구자의 추측과 일치하는 결과이다. 각각의 추천시스템은 정확도의 변화를 쉽게 비교할 수 있도록 등고선지도 및 그래프를 이용하여 나타냈다. 연구의 한계점으로는 연구자가 제시한 통합 추천시스템과 [-]집단 추천시스템에 대한 정확도는 향상되었지만 이는 임의로 구분한 기준을 바탕으로 분석하였다는 점이다. 실제 추천된 영화를 바탕으로 신규고객이 영화를 선택 한 것이 아니라 기존고객의 데이터를 임의로 분류하였기 때문이다. 따라서 이는 추천 영화가 실제 고객에 미친 영향이 아니라는 한계가 존재한다. 또한 영화가 아닌 다른 상품에 대해서 이 추천시스템을 적용하였을 경우 추천 정확도에는 차이가 있을 수 있다. 따라서 추천시스템을 적용할 때에는 각 상품 및 고객집단의 특성에 적합한 적용이 필요하다.

이동 컴퓨팅 환경에서 멀티미디어 트래픽의 효율적 지원을 위한 대역폭 예약 및 호 수락 제어 메커니즘 (Bandwidth Reservation and Call Admission Control Mechanisms for Efficient Support of Multimedia Traffic in Mobile Computing Environments)

  • 최창호;김성조
    • 한국정보과학회논문지:정보통신
    • /
    • 제29권6호
    • /
    • pp.595-612
    • /
    • 2002
  • 이동 컴퓨팅에서 고 수준의 QoS를 보장하기 위한 가장 중요한 이슈 중의 하나가 셀에서 가용할 수 있는 대역폭의 부족으로 인한 핸드-오프 종료를 감소시키는 것이다. 각 셀은 핸드-오프 호들을 위해 이웃 셀들에게 대역폭 예약을 요청하며, 예약된 대역폭은 신규 호가 아닌 핸드-오프 호들을 위해 사용된다. 핸드-오프 호를 위해 대역폭을 너무 많이 예약한다면 신규 호의 블록킹 확률이 증가하므로, 예약할 대역폭의 크기를 정확히 결정하는 것이 중요하다. 따라서, 이동 컴퓨팅 환경에서 적절한 크기의 대역폭 예약과 호 수락 제어를 통해 QoS 보장하는 것이 필수적이다. 본 논문에서는 이동 컴퓨팅 환경에서 멀티미디어 트래픽에게 지속적인 QoS를 보장하기 위해 대역폭 예약과 호 수락 제어 메커니즘을 제안하였다. 본 논문은 적절한 크기의 대역폭 예약을 위해 이동성 그래프와 2-계층 셀 구조를 기반으로 한 적응적 대역폭 예약을 제안한다. 전자는 클라이언트가 다음에 이동할 셀을 예측하는 반면, 후자는 핸드-오프 확률이 높은 클라이언트에게만 적응적 대역폭 예약 메커니즘을 적용한다. 본 논문은 클라이언트의 현재 셀과 PNC(Predicted Next Cell)에 호 수락 테스트를 수행하는 호 수락 제어를 제안하며, 이 메커니즘은 계산 및 네트워크 오버헤드를 줄일 수 있다. 본 논문에서 제시된 대역폭 예약 및 호 수락 제어 메커니즘의 성능을 평가하기 위해, 신규 호 블록킹률, 핸드-오프 호 종료율, 대역폭 이용율을 측정하였다. 시뮬레이션 결과, 본 논문의 호 수락 제어 메커니즘의 성능이 NR-CAT2, FR-CAT2, AR-CAT2와 같은 기존의 메커니즘들보다 우수함을 알 수 있었다.

FRP 이음방식에 따른 구조강도 특성에 관한 연구 (A Study on the Strength Characteristics of the FRP Bonding Method)

  • 김경우;강대곤;백명기;박재학
    • 해양환경안전학회지
    • /
    • 제21권6호
    • /
    • pp.778-783
    • /
    • 2015
  • 본 연구는 해상에서의 안전사고의 경감과 국민의 생명을 보호하기 위한 목적으로 자체 연구를 수행하여 FRP의 수리공법인 Butt Joint, Lap Joint, V-Scarf Joint(12t, 16t, 20t), X-Scarf Joint(12t 16t, 20t)의 인장강도와 굽힘강도를 통해 이음방식에 따른 구조강도 특성을 실험하였다. 이음 방법에 따른 인장강도와 굽힘강도의 시험편을 종합 분석한 결과, 인장강도의 강도와 굽힘강도의 그래프 패턴은 비슷한 양상으로 증가와 감소를 하였으며, 인장강도와 굽힘강도 모두 X-Scarf-Butt Joint-V-Scarf-Lap Joint 순으로 강도가 우수하였다. 인장강도는 강도특성이 가장 우수한 X-Scarf라 하더라도 Basic Material의 57% 수준의 강도를 나타내었고 굽힘강도는 X-Scarf가 Basic Material의 77% 수준의 강도를 나타내었다. 종합적으로 Over-Lay 구분을 포함하여 X-Scarf 12t 이음이 인장강도, 굽힘강도 특성이 우수하였으며 Lap Joint가 가장 좋지 않았다. Scarf 이음시 Taper 길이에 따른 강도의 차이는 V-Scarf 이음은 Taper의 길이가 가장 큰 20t가 인장강도, 굽힘강도 특성이 우수한 반면 X-Scarf 이음은 Taper의 길이가 가장 짧은 12t가 인장강도, 굽힘강도 특성이 우수하여 상반되는 결과를 나타내었다. 선박에는 많은 Stress가 작용하여 시험편만을 가지고 실험한 본 연구와 직접적인 비교는 힘들지만, 재료의 가장 기본 특성을 인장강도와 굽힘강도 시험을 통해 확인할 수 있다. FRP 국부적인 수리 방법인 Butt Joint, Lap Joint, V-Scarf, X-Scarf 4가지의 이음방법에 따른 시험값과 모재 대비 감소되는 비율을 제시하였고 추가적으로 V-Scarf와 X-Scarf의 Taper 길이별 특성을 12t, 16t, 20t로 구분한 결과값을 제시함으로써 수리 현장에서의 위치별 특성에 맞는 수리 방법의 응용이 가능하도록 하였다.

스마트온실 배양액 관리를 위한 클라우드 기반 데이터 분석시스템 설계 (Design of Cloud-Based Data Analysis System for Culture Medium Management in Smart Greenhouses)

  • 허정욱;박경훈;이재수;홍승길;이공인;백정현
    • 한국환경농학회지
    • /
    • 제37권4호
    • /
    • pp.251-259
    • /
    • 2018
  • 스마트온실에서 사용하고 있는 다양한 종류의 수경배양액 관리와 관련하여 ICT 기술을 활용한 작물생육 기반 배양액 제어시스템 개발을 위하여, 본 연구에서는 작물 생육단계별 시용배양액의 성분변화를 모니터링하고 이들 실측 데이터를 바탕으로 한 클라우드 기반 데이터 분석시스템을 설계하였다. 수집한 데이터 분석 및 시스템 구축을 위하여 인공광 스마트 온실에서 사용하는 관행의 무기 배양액, 기존 액비 및 폐기 농업부산물 유래 제조액비 등 수종의 배양액을 공시하였으며, 수경재배 작물 생육단계별 시용 배양액내 성분 변화패턴을 모니터링하였다. 발색법에 의한 흡광광도법을 활용하여 $NH_3-N$, $NO_3-N$, $NO_2-N$, $SiO_2$, $PO_4^{3-}$ 및 Cu 등 총 9종의 성분농도 변화를 산출하고 작물의 기초 생육량을 조사하였다. 각 작물의 기초 생육량 데이터는 오픈스택 클라우드 시스템에서 생성된 가상머신(Virtual machine)에 관계형 데이터베이스를 구축하여 수집 항목별로 분류 저장하였다. 저장된 작물별 배양액의 성분변화와 생육량 데이터는 노드제이에스(Node. js) 웹 프레임워크(Framework)를 통해 매주 수집된 데이터를 가시화하여 제공한다. 클라우드 기반 데이터베이스를 구축을 통하여 배양액 성분 실측치 비교와 작물 생육상황은 사용자 스마트 디바이스(Smart devices)를 활용, 작물종과 배양액 성분을 순차적 선택하고, 각 데이터의 비교 및 분석을 시계열 그래프로 실험 결과를 가시화할 수 있도록 하였다. 본 연구에서 개발한 클라우드 기반 데이터 분석시스템 스마트온실내 수경배양액 성분변화 및 재배 작물의 생육을 정기적으로 모니터링한 실측치를 기반으로 데이터베이스를 구축한 것으로 시설재배지나 인공광 스마트온실 등 다양한 농업현장에서 생육관리를 위하여 활용할 수 있다.

Emoticon by Emotions: 소비자 감성 기반 이모티콘 추천 시스템 개발 (Emoticon by Emotions: The Development of an Emoticon Recommendation System Based on Consumer Emotions)

  • 김건우;박도형
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.227-252
    • /
    • 2018
  • 인터넷의 발달을 통해 지속적으로 인스턴트 커뮤니케이션이 발달해왔다. 인스턴트 커뮤니케이션에서 가장 대표적인 것이 메신저 애플리케이션이다. 메신저 애플리케이션에서 이모티콘은 송신자의 감정 전달을 보완하기 위해 활용됐다. 메신저 애플리케이션 송신자의 감정 전달에 약한 모습을 보이는데 그 이유는 면대면 커뮤니케이션이 아니기 때문이다. 이모티콘은 과거 화자의 기분 상태를 나타내는 기호로만 사용됐다. 그러나 현재는 이모티콘은 감정 전달 뿐만 아니라 개인의 특성과 개성을 나타내고 싶어 하는 소비자의 심리를 반영하는 형태로 발전해가고 있다. 이모티콘의 사용 환경이 개선되었고, 이모티콘 자체가 발전함으로써 이모티콘 자체에 대한 관심도는 증가하였다. 대표적인 예로 카카오톡, 라인, 애플 등에서 서비스를 진행하고 있으며, 관련 컨텐츠 상품의 매출도 지속적으로 증가할 것으로 전망하고 있다. 이모티콘 자체의 관심도 증가와 관련 사업의 성장세에도 불구하고 현재 적절한 이모티콘 추천 시스템이 부재하다. 국내 점유율 90% 이상의 메신저 애플리케이션인 카카오톡조차 단순히 인기 순이나 최근 순, 혹은 간략한 카테고리 별로 분류한 정도이다. 소비자들은 원하는 이모티콘을 찾기 위해서 스크롤을 계속해서 내려야 하는 불편함이 있으며, 본인이 원하는 감성의 이모티콘을 찾기 어렵다. 소비자들이 편의성 향상과 기업의 이모티콘 관련 사업의 판매 매출 증가를 위해 소비자가 원하는 이모티콘을 추천해줄 수 있는 이모티콘 추천 시스템이 필요하다. 적절한 이모티콘을 추천하기 위해서 소비자가 이모티콘을 보고 느낀 감성에 대해 정량화할 필요성이 있다. 정량화를 통해 소비자가 원하는 이모티콘 셋이 가진 특징과 감성에 대해 분석할 수 있으며, 분석 결과를 토대로 소비자에게 이모티콘을 추천할 수 있다. 이모티콘은 메타데이터화의 방법으로 정량화가 가능하다. 메타데이터화 방법은 빅데이터 시대에 비정형, 반정형 데이터에 대해서 의미를 추출하기 위해 데이터를 구조화 혹은 조직화하는 작업이다. 비정형 데이터인 이모티콘을 메타데이터화를 통해 구조화한다면, 쉽게 소비자가 원하는 감성 형태로 분류할 수 있을 것으로 생각한다. 정확한 감성을 추출하기 위해 감정과 관련된 선행 연구를 통해 7개의 공통 감성 형용사와 한국어에서만 나타나는 은유 혹은 표현적 특징들을 반영하기 위해 하위 세부 표현들까지 고려했다. 이모티콘의 가장 큰 특징인 캐릭터를 기반으로 "표상", "형상", "색상"의 범주에서 세부 하위 감성들을 수집했다. 정확도 높은 추천 시스템을 설계하기 위해 감성 지표만이 아니라 객관적 지표도 고려하였다. 메타데이터화 방법을 통해 이모티콘이 갖고 있는 캐릭터의 특징을 객관적 지표로 14개, 감성 지표로 활용하기 위해 감성 형용사를 36개를 추출하였다. 추출된 감성 형용사는 대비되는 형용사로 구성하여 총 18개로 줄였으며, 18개의 감성 형용사는 카카오톡의 이모티콘을 인기 순으로 임의의 40개 셋을 대상으로 측정하였다. 측정을 위해 이모티콘을 평가할 조사 대상자 온라인으로 모집하였고, 277명의 20~30대의 이모티콘을 구매한 경험이 있는 소비자를 대상으로 설문을 진행하였다. 설문응답자에게 서로 다른 5개의 이모티콘 셋을 평가하도록 하였다. 평가 결과 수집된 18개의 감정 형용사는 요인분석을 통해 감성 지표 요인으로 추출하였다. 추출된 소비자 감성 지표의 요인은 "코믹", "부드러움", "모던함", "투명함"이었다. 이모티콘의 객관적 지표와 감성 지표 요인을 활용하여 소비자 만족과의 관계를 분석하였고, 객관적 지표와 감성 지표 간의 관계도 분석하였다. 이 과정에서 객관적 지표가 소비자 태도에 바로 영향을 주는 것이 아니라 감성 지표 요인을 통해 소비자 태도에 영향을 주는 매개 효과가 있음을 확인하였다. 분석 결과는 소비자의 감성 평가 메커니즘을 밝혀냈고, 소비자의 이모티콘 감성 평가 메커니즘은 객관적 지표가 감성 지표 요인에 영향을 미치며, 감성 지표 요인은 소비자 만족에 영향을 미치는 관계였다. 따라서 감성 지표 요인의 네 가지만으로 이모티콘 추천 시스템을 설계하였고, 추천 방법은 각 감성과의 거리를 유클리디안 거리로 측정하여 거리의 차가 0에 가까울수록 비슷한 감성으로 정의하였다. 본 연구에서 제안한 이모티콘 시스템의 검증을 위해 각 감성 지표 요인과 소비자 만족의 평균을 지표 값으로 활용하여 각 이모티콘 셋의 감성 패턴을 그래프로 비교하였고, 추천된 이모티콘들과 선택된 이모티콘이 대체로 비슷한 패턴을 그리는 것을 확인하였다. 정확한 검증을 위해 사전 조사하였던 소비자를 대상으로 이모티콘 추천 시스템이 제시한 결과와 유사하게 평가하였는지 유사 순위를 세 구간으로 나누어 비교하였고, 순위별 예측 정확도는 결과 1순위 81.02%, 2순위 76.64%, 3순위 81.63%였다. 본 연구의 결과는 학문적, 실무적으로 다양한 분야에서 활용 가능한 방법론을 제시하였으며, 기존에 없던 이모티콘 추천 시스템의 설계를 통해 소비자에게는 편의와 이모티콘을 서비스하는 기업에는 매출증대의 효과를 가져올 것으로 예상한다. 그리고 본 연구를 통해 지능형 이모티콘 시스템으로 발전할 수 있는 단초를 제공했다는 점에서 의미가 있다. 본 연구에서 제안한 감성 요인들을 활용하여 감성 라이브러리로 사용함으로써, 새로운 이모티콘 출시 시 감성 평가의 지표로 활용할 수 있다. 축적된 감성 라이브러리와 기업의 판매 데이터, 매출 정보, 소비자 데이터를 결합하여 본 연구에서 제안한 추천 시스템을 복합형 추천 시스템으로 발전시켜 단순 소비자의 편의성이나 매출 증가뿐만 아니라 기업에서 전략적으로 활용 가능한 지적 자산으로 활용할 수 있을 것으로 판단한다.