Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.754-756
/
2004
본 논문에서는 칸투어 추적의 정확도 향상을 위하여 배경이 제거된 에지 중에서 실제로 추적하고자 하는 객체의 경계선에 존재하는 에지들을 선택하는 방법을 제안한다 우리는 전 프레임에 존재하는 객체 칸투어의 수직 방향 그래디언트를 계산한다. 또한 다양한 크기를 가진 면적의 개념을 사용한 그래디언트 계산은 노이즈에 의한 영향이나 작은 체크무늬의 텍스쳐를 가진 장면에서도 정확하게 객체의 경계선에 존재하는 에지를 선택할 수 있게 한다. 우리는 이렇게 다양한 크기로 계산된 그래디언트값들은 가중치를 사용하여 합으로 계산하고 이 값이 큰 에지들을 경계선에 존재하는 에지로 고려한다.
Iris recognition is a biometric technology which can identify a person using the iris pattern. Recently, iris information is used in many fields such as access control and information security. It is important for the iris recognition system to extract the feature which is invariant to changes in iris patterns. Those changes can be occurred by the influence of lights, changes in the size of the pupil. In this paper, we propose a novel method based on vector summation of gradient orientation vectors. Experimental results show that the proposed method reduces processing time with simple vector calculation, requires small feature space and has comparable performance to the well-known previous methods.
최근 사람의 생체정보를 이용하여 동일인 여부를 판별하는 생체인식에 대한 연구가 활발히 진행되고 있다. 지금까지 인증이나 인식에 사용된 생체 정보로는 홍채, 지문, 망막, 음성, 얼굴 등이 있으며 그 중 홍채는 신뢰성이나 정확성 면에서 우수한 성능을 가진다. 홍채 인식은 다양한 환경하에서 홍채를 취득해야 하기 때문에 주변 환경에 민감할 수 밖에 없다. 특히 홍채의 회전으로 인한 홍채 무늬 패턴의 변화에 강인한 특징을 추출하는 것은 홍채 인식에 있어 매우 중요하다. 본 논문에서는 국부적 그래디언트 방향 히스토그램을 이용한 회전된 홍채의 특징 추출 방법을 제안하였다. 제안된 방법은 성능면에서 기존의 방법들과 비교하여 대등한 성능을 보여주는 것을 실험을 통해 확인하였다.
Journal of the Korean Institute of Telematics and Electronics
/
v.26
no.7
/
pp.157-165
/
1989
To recover three dimensional information in Shape from Texture, the distorting effects of projection must be distinguished from properties of the texture on which the distortion acts. In this paper, we show an approximated maximum likelihood estimation method in which we find surface orientation of the visible surface (hemisphere) in gaussian sphere using local analysis of the texture. In addition, assuming that an orthogonal projection and a circle is an image formation system and a texel (texture element) respectively, we drive the surface orientation from the distribution of variation by means of orthogonal projection of a tangent direction which exists regularly in the arc length of a circle. We present the orientation parameters of textured surface with slant and tilt in gradient space, and also the surface normal of the resulted surface orientationas as needle map. This algorithm is applied to geographic contour (artificially generated chejudo) and synthetic texture.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.11a
/
pp.10-12
/
2016
본 논문에서는 선 드로링 도면 간의 유사도 정도를 비교하여 도면으로 표현된 3차원 물체의 유사도 측정 알고리즘을 제안한다. 앞면, 뒷면, 좌측면, 우측면, 윗면, 아래면의 선 드로잉 영상으로 표현된 총 여섯 개의 영상을 한 물체의 대표 영상으로 이용한다. 데이터베이스의 3차원 물체 영상들은 전처리를 거친 후 각 영상의 여덟 방향의 그래디언트(gradient) 히스토그램을 측정하고 각 영상을 히스토그램의 기술자 벡터로서 표현하여 저장한다. 입력 영상 역시 같은 방식으로 기술자 벡터를 구하고 이를 비교될 영상의 기술자와 비교하여 유사도를 측정한다. 이와 같은 방식으로 가장 유사한 영상 집합을 가지는 N개의 물체를 탐색하여 시각적으로 제시한다.
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.574-576
/
2022
최근 여러 분야에서 그래프 신경망(graph neural network, GNN)이 활발히 연구되고 있다. 하지만 지금까지 대부분의 GNN 연구는 단일 GNN 모델의 성능을 향상하는 데 집중되었다. 본 논문에서는 앙상블(ensemble) 기법의 대표적 기법인 그래디언트 부스팅(gradient boosting)을 이용하여 GNN의 앙상블 모델을 만드는 방법을 제안한다. 제안 방법은 앞서 만들어진 GNN의 오차를 경사 하강법(gradient descent)을 이용하여 감소시키는 방향으로 다음 GNN을 생성한다. 이 과정을 반복하여 GNN의 최종 앙상블 모델을 얻는다. 실험에서 GNN의 대표적인 모델인 그래프 합성곱 신경망(graph convolutional network, GCN)에 제안 방법을 적용하여 앙상블 모델을 생성한 결과, 단일 GCN 모델에 비해 노드 분류 정확도가 11.3%p까지 증가하였음을 확인하였다.
In this paper, multi-region based Radial Graph Convolutional Network (MRGCN) algorithm which can perform end-to-end action recognition using the optical flow and gradient of input image is described. Because this method does not use information of skeleton that is difficult to acquire and complicated to estimate, it can be used in general CCTV environment in which only video camera is used. The novelty of MRGCN is that it expresses the optical flow and gradient of the input image as directional histograms and then converts it into six feature vectors to reduce the amount of computational load and uses a newly developed radial type network model to hierarchically propagate the deformation and shape change of the human body in spatio-temporal space. Another important feature is that the data input areas are arranged being overlapped each other, so that information is not spatially disconnected among input nodes. As a result of performing MRGCN's action recognition performance evaluation experiment for 30 actions, it was possible to obtain Top-1 accuracy of 84.78%, which is superior to the existing GCN-based action recognition method using skeleton data as an input.
Proceedings of the Korea Information Processing Society Conference
/
2015.04a
/
pp.848-850
/
2015
본 논문에서는 픽셀 그레디언트의 방향성 정보를 이용하여 복원하는 예제기반 인페인팅 방법을 제안한다. 제안하는 방법에서는 영상 내에서 픽셀 그레디언트의 방향성을 검출하여 강도가 높은 그레디언트를 가지는 픽셀들을 먼저 복원하는 특징을 가진다. 지역적인 그래디언트의 특성을 이용하여 복원 영역의 연결성을 높이고 에러의 파급 효과를 줄임으로써, 기존의 예제기반 인페인팅 방법보다 개선된 결과를 보여준다.
본 논문에서는 회화적 렌더링에서 칼라변환을 이용한 브러쉬 스트로크의 생성에 관한 새로운 알고리즘을 제안한다. 본 논문의 브러쉬 스트로크 생성을 위한 전체적인 구성은 다음과 같다. 첫째, 두 장의 사진(한 장의 소스 이미지와 한 장의 참조 이미지)을 입력으로 하여 칼라 변환 이론을 적용하여 색상 테이블이 바뀐 새로운 이미지를 생성한다. 이 방법은 소스 이미지의 칼라 분포 형태를 창조 이미지의 칼라 분포 형태로 변환하기 위해, 선형 히스토그램 매칭이라 불리는, 간단한 통계학적 방법을 이용한다. 둘째, 가우시안 블러링과 소벨 필터를 이용하여 에지를 검출한다. 검출된 에지는 브러쉬 스트로크 렌더링 시 에지 부분에서 스트로크를 클리핑 함으로써 이미지의 윤곽선 보존을 위해 사용된다. 셋째, 브러쉬 스트로크의 방향을 결정하기 위한 방향맵을 생성한다. 방향맵은 입력 영상에 대한 영역 분할 및 병합을 토대로 만들어진다. 영역별 각 픽셀들에 대해 이미지 그래디언트에 기초한 일정한 방향을 부여함으로써 방향맵을 구성한다. 넷째, 구성된 방향맵을 참조하여 브러쉬 스트로크 생성의 기초가 되는 베지어 곡선(Bezier Curve)의 제어점(Control point)을 설정한다. 실제 회화작품에서 사용되는 브러쉬 스트로크는 일반적으로 곡선의 형태를 이루므로 곡선 표현이 가능한 베지어 곡선을 이용하여 브러쉬 스트로크를 표현하였다. 마지막으로, 생성된 브러쉬 스트로크를 에지부문에서 클리핑하고 배경색을 참조하여 블렌딩하거나 퐁 조명 모델을 이용하여 이미지에 적용하게 된다.
홍채인식은 홍채의 무늬 패턴 정보를 이용하여 동일인 여부를 판별하는 생체인식 기술이다. 최근 들어 홍채정보를 이용하여 출입통제, 정보보안등의 분야에 많이 활용되고 있다. 이러한 홍채 인식 시스템에 있어 조명의 영향이나 동공의 크기, 홍채의 회전 등 홍채 취득시 다양한 환경 조건으로 인해 발생될 수 있는 홍채 무늬 패턴의 변화에 강인한 특징을 추출하는 것은 홍채인식에 있어 매우 중요한 과제이다. 본 논문에서는 국부적 방향 히스토그램을 이용한 새로운 홍채 특징 추출 방법을 제안하였다. 제안된 방법은 성능면에서 기존의 방법들과 비교하여 대등한 성능을 보여주는 것을 실험을 통해 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.