• Title/Summary/Keyword: 균열 자기치유

Search Result 62, Processing Time 0.022 seconds

A Fundamental Study on the Influence of Performance of Cementitious Composites of Inorganic Core Material for Self-Healing Capsule of Cracks (균열 자기치유를 위한 캡슐용 무기계 코어재료의 시멘트 복합체 성능에 미치는 영향에 관한 기초적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Choi, Byung-Keol;Kim, Cheol-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.74-82
    • /
    • 2017
  • In this study, we prepared a core material based on the inorganic materials in liquid form for applying an inorganic-based core material to a core material for the self-healing capsules as a part of the basic study to manufacture of self-healing capsule that can heal cracks of cementitious composite. Manufactured core material based on the inorganic materials were applied directly to the cement composite before its encapsulation, were evaluated the effect on performance of cementitious composite as wall as repair performance of the cracks in the cracks. The test results showed that core material based on the inorganic materials was effective to improve the compressive and adhesion strength, had an absorption, permeation water, penetration of chloride iones and freeze-thaw resistance performance. Through the results of this paper, we want to utilize the results as a basis data of the performance of the cement composite that can be obtained when applied to inorganic core materials based on self-healing capsules and future advances localized self-healing capsule technology.

The Effects of Self-Healing for Ternary Blended Cement in Tap-water and Sea-water (삼성분계 시멘트의 해수와 담수에서의 자기치유 효과)

  • Kim, Tae-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.10-19
    • /
    • 2016
  • The objective of this study is to investigate the self-healing properties of ternary blended cement(TBC) paste made with OPC, GGBFS and FA. The influence of OPC-GGBFS-FA on the self-healing ability of ternary blended cement paste was researched by ultrasonic pulse velocity(UPV) measurement. The TBC paste with GGBFS-FA replacement ratios of 20%, 40% and 60% were prepared having a constant water-cementitious materials ratios os 0.5. The research focuses on behavior after 28days(after loading). Four-point bending tests are used to pre-cracked the prismatic specimens at 28days. For specimens (uncracked and cracked) submerged in tap-water and sea-water until 60days. According to the experimental results, the TBC paste system has self-healing ability increased when the fraction of GGBFS increased. Because GGBFS and FA continues to hydrate after 28days, it is likely that hydrated products from GGBFS and FA may modify microstructures, seal these cracks. From these results, it is clear that the crack in all samples experience self-healing and that this occurs mostly in the first 30days of submerging. Futhermore, most of the healing for both specimens of submerged in sea-water and tap-water occurred during the first 30days. Sea-water submerged specimens healed cracks as fast as those in tap-water. Differences in healing effects of submerged in sea-water and tap-water may be attributed to the presence of specific sea-water ions. Therefore, self-healing effects considered age-effects was more strong effect occurred mostly in the first 30days, and then gradually weaken.

Investigation of Crack Healing and Optimization of Microbe Carrier for Microbial Self-healing of Concrete Crack (미생물 기반 콘크리트 자기치유를 위한 미생물 담체 최적화 및 균열치유성능 분석)

  • Yun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.62-67
    • /
    • 2024
  • In this paper, we developed and optimized a chitosan-based polymer microbial bead carrier that is cell-friendly, has a high moisture absorption rate, and effectively provides the conditions for microbial biomineral formation as an optimal microbial carrier that protects microorganisms in concrete, and evaluated the self-healing performance of mortar using it. In order to incorporate circular-shaped microbial endospores, a circular-shaped microbial bead carrier was developed by combining chitosan and alginate polymers, and the amount of calcium carbonate produced could be actively controlled by adjusting the composition of the carrier. The amount of biominerals formed and the size of crystals were maximized in the hydrogel bead carrier containing chitosan, and in the case of mortar cracks using this, it was confirmed that self-healing of cracks with a maximum crack width of 0.3mm was achieved within 96 hours after crack generation.

Development of Oxygen Diffusion Test Method for Crack Width Evaluation of Self-Healing Concrete (자기치유 콘크리트의 균열치유 성능평가를 위한 개선된 산소확산 시험방법 제안)

  • Lee, Do-Keun;Shin, Kyung-Joon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.375-382
    • /
    • 2021
  • Self-healing concrete is in the spotlight in that it can effectively extend the lifespan of concrete structures by healing cracks in the structure by themselves without additional repairing or retrofiting actions. Currently, self-healing concrete is a field that is being actively studied around the world, but since most studies focus on the improvement of healing performance, there is a lack of methods to rationally evaluate the self-healing performance of concrete. Although the gas diffusion test method has been developed for the use in the performance evaluation of self-healing concrete, it has revealed that for gas diffusion through the matrix affect the crack diffusion coefficients depending on the environmental conditions such as the saturation of the specimen, the temperature, and humidity during the experiment. Therefore, in this study, the method has been proposed to eliminate the influence of the matrix diffusion when calculating the crack diffusion coefficient. In addition, a pre-conditioning process was introduced to shorten the experimental time. As a result, the crack width could be estimated with an error level of less than 3% in the test time of about 20 minutes.

Evaluation Method of Self-healing Performance of Cement Composites (시멘트 복합체의 자기치유 성능평가 방법)

  • Lee, Kwang-Myong;Kim, Hyung-Suk;Min, Kyung-Sung;Choi, Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.134-142
    • /
    • 2020
  • In this study, in order to evaluate the self-healing performance of cement composites the self-healing test method and the analysis method were suggested by applying constant water head permeability test, chloride migration test and repeated bending test. The method of making a cracked specimen and controlling crack width are also proposed. Constant head water permeability test can evaluate the healing performance by using the decreasing rate of water flow passing through the crack zone of a specimen. Furthermore, the equivalent crack width can be used to intuitively investigate the healing effect with healing period. The chloride migration test can evaluate the healing rate by the decreasing rate of the diffusion coefficient obtained by ASTM C 1202. Mechanical healing performance can be evaluated using ISR and IDR estimated from load vs. CMOD relationship graph obtained through the repeated bending test. Finally, the applicability of proposed self-healing evaluation methods was examined by testing mortar specimens with or without self-healing agents.

Self-Healing Properties in Cracking of Blast Furnace Slag Cement Paste (고로 슬래그 시멘트 페이스트 균열에서의 자기치유 특성)

  • Lee, Seung-Heun;Kang, Kook-Hee;Lim, Young-Jin;Lee, Se-Jin;Park, Byeong-Seon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • This study investigated the self-healing properties of blast furnace slag cement paste sample with $Na_2SO_4$ as a blast furnace slag activator after conducting the permeability test. Self-healing properties were examined by crack filling ratio and quantification of self-healing products. The degree of self-healing was evaluated by the crack filling ratio, and the crack filling ratio was analyzed by panoramic analysis using BSE-DIP for objectivity. The average crack filling ratio showed a tendency of decreasing from the upper part of the specimen to the lower part as the average of the top part was 18%, the middle part was 7% and the bottom part was 5% on average. The maximum crack filling ratio was 44% and the minimum crack filling ratio was 3%. The residual self-healing product after the permeability test contained a large amount of Ca element and Al element derived from the blast furnace slag, and the Si element was mainly present near the crack surface. The most abundant minerals in self-healing products were about 68% C-A-H. $CaCO_3$ was about 13% and C-A-S-H was about 8%. Three minerals accounted for 90% of self-healing products. C-A-H was mainly present at a part slightly distant from the crack surface and showed an angular or acicular shape. The C-A-S-H was generated on the surface naturally connected to the existing specimen, and the $CaCO_3$ was generally observed on the surface of the specimen or the inside of the crack.

Experimental Study on the Quality Properties of Precast Concrete Utilizing Self-Healing Capsules as an Essential Technology for Smart City Implementation (스마트 시티 구현을 위한 요소기술로써 균열 자기치유 캡슐 활용 프리캐스트 콘크리트의 품질특성 평가에 관한 실험적 연구)

  • Sung-Rok Oh;Eun-Joon Nam;Neung-Won Yang;Yun-Wang Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.568-575
    • /
    • 2023
  • This paper aims to evaluate the quality characteristics and healing performance of precast concrete incorporating self-healing technology as a key technique for the construction of smart cities. The study found that precast concrete mixed with hybrid capsules exhibited a tendency of reduced slump and air content, impacting the quality characteristics. Specifically, the slump decreased by up to 14 %, and the air content by up to 9 %. Moreover, the inclusion of hybrid capsules in the concrete resulted in a maximum decrease of 16 % in compressive strength and 18 % in flexural strength. However, the introduction of hybrid capsules significantly enhanced the crack healing performance. The assessment through water permeability tests showed that the healing rate of 0.3 mm crack width after a 28-day healing period improved as the mixing ratio increased, with the healing rates at 1 %, 3 %, and 5 % hybrid capsule mixtures observed to increase by approximately 16 %, 25 %, and 32 %, respectively.

An Experimental Study on the Healing Performance of Cement Composites According to Mixing Ratio of Self-Healing Hybrid Capsules (자기치유 하이브리드 캡슐 혼합율에 따른 시멘트 복합재료의 치유성능에 관한 실험적 연구)

  • Yun-Wang, Choi;Jun-Ho, Park;Yong-Jic, Kim;Sung-Rok, Oh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.531-538
    • /
    • 2022
  • In this study, the self-healing hybrid capsules were prepared, were mixed with 3 %, 5 %, and 7 % based on cement mass. The healing performance were evaluated according to mixing ratio self-healing hybrid capsule. As a result of the experiment, it was found that the crack healing performance improved as the mixing rate of the self-healing hybrid capsule increased, but the quality performance tended to decrease. Therefore, it is judged that using the mixing ratio of the hybrid capsule within 5 % reduces the quality performance to within about 10 % and secures about 90 % or more of the healing performance.

An Experimental Study on Crack Self-Healing and Mechanical Recovery Performance of Cement Composites Materials Using Encapsulated Expandable Inorganic Materials based Solid Healing Materials (캡슐화된 팽창성 무기재료 기반 고상 치유재 활용 시멘트 복합재료의 균열 자기치유 및 역학적 회복성능에 관한 실험적 연구)

  • Choi, Yun-Wang;Nam, Eun-Joon;Kim, Cheol-Gyu;Oh, Sung-Rok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.92-100
    • /
    • 2022
  • In this paper, to evaluate the effect of SC on the crack self-healing performance and mechanical recovery performance of cement composites, encapsulated intumescent inorganic material-based solid healing materials were prepared. SC was mixed with cement composite materials to evaluate the basic properties, permeability test, and load reload test. SC slightly improved the flow of cement composites, and the compressive strength decreased by about 10 %. Also, the flexural strength decreased by about 30 %. It was found that when SC was mixed with the cement composite material by 5 %, the crack self-healing rate of Plain was improved by about 𝜟10 %. As a result of the load reload test, it was found that the mechanical recovery rate of Plain was improved by about 𝜟20 %. In addition, as a result of analyzing the correlation between the crack self-healing rate and the mechanical recovery rate by the load reload test, it is judged that the healing area of the Plain can be increased due to SC.

Effect of Cyclic Wetting-drying on Self-healing of Cementitious Materials Containing Superabsorbent Polymers (습윤/건조 반복 작용이 고흡수율 폴리머를 함유한 시멘트계 재료의 자기치유에 미치는 영향)

  • Hong, Geuntae;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.88-96
    • /
    • 2020
  • In this study, the effect of cyclic wetting-drying on the self-healing of cementitious materials containing superabsorbent polymers (SAPs) were experimentally evaluated. In each cycle, cracked cement paste specimens containing various SAP dosages were exposed to wet conditions for 1 h, during which the capillary water absorption tests and water flow tests were conducted, and then exposed to dry conditions for 47 h. The capillary water absorption test results showed that the sorptivity values of the specimen without SAPs, SAP 0.5%, SAP 1.0%, and SAP 1.5% specimens were decreased by approximately 22.9%, 36.8%, 42.8%, and 46.3%, respectively, after 8 cycles. In addition, the water flow test results showed that the amount of water runoff through the cracks of all cracked specimens gradually decreased over wet/dry cycles, especially the reduction ratio of the amount of water runoff increased with increasing SAP dosage. Furthermore, the swelling behavior of SAPs in cracks by in gress water was con firmed via X-ray computed tomography (CT) analysis. These results indicate that the effective crack width can be reduced as SAPs absorb water and swell, while the water absorbed in SAPs can be released to crack surfaces under dry conditions, further promoting healing product formation. This study demon strates that the in corporation of SAPs can in crease the water tightness of cracks, thereby improving the self-healing efficiency of cementitious materials.