• Title/Summary/Keyword: 균열 감수성

Search Result 60, Processing Time 0.018 seconds

Effects of Center Segregation on Weld Cold Cracking Susceptibility (용접 저온균열 감수성에 미치는 중심 편석의 영향)

  • 안영호;이종봉;장래웅;소문섭
    • Journal of Welding and Joining
    • /
    • v.12 no.2
    • /
    • pp.87-96
    • /
    • 1994
  • Correlation between microstructural features and segregation of elements (Si, Mn, P and S) near the mid of thickness in the base metal and the synthetic HAZ was investigated. Furthermore, the relationship between the degree of center segregation and weld cold cracking susceptibility in the thickness direction was also conducted by evaluating the effect of P concentration on the critical applied stress. The results obtained are as follows: 1) Pearlite band, containing the MnS type inclusion and a locally transformed structure with a higher hardness, was observed in the center segregation region. 2) By the weld thermal cycle, center segregation region was transformed to the white band which had a higher hardness than that of base metal due to a greater hardenability of concentrated Mn, P etc.. 3) Weld cold cracking susceptibility in the thickness direction was mainly dependent on the concentration of impurity elements rather than on the number of the segregated particles near the mid of thickness. 4) During welding, the higher concentrated region was easily changed into white band. Therefore, it could be predicted that the initiation and propagation of a cold crack would be promoted by increasing the restraint stress and hydrogen content.

  • PDF

Development of Welding Flux and Process for Prevention of Cold Cracking in SAW Weld Metal (잠호용접부 균열방지를 위한 용접 플락스 및 시공기법 개발)

  • Choi, Kee-Young;Kim, Chan;Kim, Young-Pil
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.118-127
    • /
    • 2007
  • SAW(Submerged Arc Welding) process is generally applied to a wide range of welding area in the fabrication of steel structure. This process has a good characteristic properties such as the high quality of welds and the high deposition rates, but in case of welding on a thick steel plate, it also has higher cold crack susceptibility than that of a thin steel plate. The purpose of this research is to find the main factor of crack generation and clarify the countermeasure for crack prevention, and then establish the optimum welding condition in a heavy thick steel plate. The results of this study are as follows, 1. The cause of crack generation is found the diffusible hydrogen penetrated into weld metal by decomposition of the remained moisture in SAW flux during welding. 2. For the removal of diffusible hydrogen, the raw materials of SAW flux are to be dehydrated at the high temperature in the initial manufacturing stage. 3. Mechanical properties of weld metal welded with the dehydrated SAW flux were evaluated very excellent, furthermore the weld metal has been proved to have low diffusible hydrogen content with 3.1ml /100g. 4. The weldability and quality welded with thick steel plates were improved by establishing the new optimum welding condition.

  • PDF

A Study of Weld Cracking Susceptibility of Gamma Titanium Aluminides (Gamma Titanium Aluminide의 용접균열 감수성에 관한 연구)

  • ;W.A. Baeslack III;T.J. Kelly
    • Proceedings of the KWS Conference
    • /
    • 1995.10a
    • /
    • pp.208-211
    • /
    • 1995
  • Five cast gamma titanium aluminides, Ti-45~48%Al-2%Nb-2%Cr (nominal composition in at. %), were laser welded and their weld cracking susceptibilities were evaluated. Laser power, traversing rate and preheat temperature were systematically varied to generate a series of welds exhibiting a wide range of cooling rate ($100^{\circ}C/s-10,000^{\circ}C/s$). As Al content increased and the weld cooling rate decreased, solidification cracking susceptibility increased while solid-state cracking susceptibility decreased. Through laser beam energy input control and preheat, it was determined possible to produce high quality laser welds.

  • PDF

The effection of alloying elements on welding characteristics of stainless steel (스테인리스강의 용접 특성에 미치는 합금원소의 영향)

  • 정호신;배동수;엄동석
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.16-23
    • /
    • 1997
  • Stainless steel are widely applicable in various engineering fields for its exellent corrosion and impact ressistance. Austenitic weld metal has some ferrite for preventing solidification cracking by ASME specification. Several family of austenic stainless steel contains varying ferrite contents. But ferrite in austenic stainless steels is adversely affect weld metal toughness and since fully austenic grades are known to have good toughness. Austenic stainless steel has various alloying addition for improving corrosion resistance, impact toughness and solidification crack resistance. The effect of various alloying elements are not found to be clear in present. From this view of point, this study tried to establish the criteria of alloy design for austenic stainless steel by controlling primary solidification mode and clarifying the effect of several alloying elements.

  • PDF

Characteristics of HAZ Toughness and Cold Crack Susceptibility of Heavy Thickness API 2W Gr. 50 Steel for Offshore Structures (해양구조물용 극후물 API 2W Gr. 50강의 HAZ 인성 및 저온균열 감수성)

  • 홍현욱;김충명
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.32-33
    • /
    • 2003
  • The evaluation of HAZ toughness and cold crack susceptibility of 90mm thickness API 2W Grade 50 steel has been made in accordance with API RP 2Z as preproduction qualification test to be certified as il steel supplier from Shell International E & P. It was shown that the steel has superior HAZ toughness; CTOD value for CGHAZ more than 1.5mm at -10$^{\circ}C$, CVN absorbed energy more than 150J at -60$^{\circ}C$. Additionally, no generation of cold cracks was observed at 0.7kJ/mm even without preheating condition. These excellent results are due to the extremely low hardenability in HAZ of the steel.

  • PDF

The Effect of Alloying Elements on Weldability and Corrosion Resistance of Austenitic Stainless Steels(I) (오스테나이트계 스테인리스강의 용접성과 내식성에 미치는 합금원소의 영향(I) - 응고균열 감수성을 중심으로 -)

  • Jeong, Ho-Shin;Lee, Yun-Young;Bae, Dong-Soo
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.57-65
    • /
    • 2012
  • The interest of austenitic heat resistant stainless steels containing high Si has increased because they have higher resistance of oxidation and higher strength at high temperature than STS 310. This study carried out Varestraint test for evaluation of solidification cracking sensitivity of 14 different stainless steels. As a result of Varestraint test, all specimens solidified as primary ferrite, and solidification crack sensitivity increased with adding $N_2$ to shielding gas. Nb and W had beneficial effect on solidification crack resistance in case of less than FN 2 containing, but crack sensitivity increased with Nb and W in case of more than FN 2. Ce had beneficial effect on solidification crack resistance but impaired weld bead appearance.

Influence of strain rate on the acoustic emission signal characteristics in corrosive environment (부식환경하에서 음향방출신호 특성에 미치는 변형률속도의 영향)

  • Yu, Hyo-Seon;Jeong, Se-Hui
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.12-21
    • /
    • 1995
  • The study was performed to study the effects of strain rate on acoustics emission( AE) during bulging test in corrosive environmentsynthetic sea water. The strain rates used were in the range $4 \times 10^{-6}S^{-1}$ to $1 \times 10^{-4} \times S^{-1}$ and the parameters used to evaluate AE signal characteristics were AE hit and amplitude. It can be observed that the cumulative AE hit and average amplitude during fracture process increase highly at decreasing strain rates while the equivalent fracture strain and the crack length of circumferencial direction become decrease. The peak point of AE signal characteristic parameters approach to the first half of test. When the average amplitude per unit equivalent fracture strain was above 20dB, it was definitly observed stress corrosion cracking phenomena. Additional, we knew that the AE test had the possibility to evaluate SCC susceptibility with various strain rates.

  • PDF

A Study on Stress Corrosion Cracking Evaluation with Material Degradation of High Temperature Components (고온부재의 재질열화에 따른 응력부식균열 평가에 관한 연구)

  • Park, Jong-Jin;Yu, Ho-Seon;Jeong, Se-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1123-1132
    • /
    • 1996
  • It has been reported that high temperature structural components represent the phenomenon of material degradation according to a long term service under high temperature and pressure. Especially, fossile power plant components using the fossil fuel and heavy oil are affected by dewpoint corrosion of $H_2SO_4$produced during a combustion. Therefore, the service materials subjected to high temperature and pressure may occur the stress corrosion cracking. The object of this paper is to investigate SCC susceptibility according to the material degradation of the high temperature structural materials in dewpoint corrosive environment-$H_2SO_4$.The obtained results are summarized as follows : 1) In case of secondary superheater tube, the fractograph of dimple is observed at the concentration of $H_2SO_4$-5%. When the concentration of $H_2SO_4$ is above 10%, the fracture mode is shifted from a transgranular fracture to an quasi-intergranular fracture according to the increment of concentration. 2) In the relationship between [$\Delta$DBTT]$_sp$ and SCC susceptibility, it is confirmed that the greater material degradation degree is, the higher SCC susceptibility is. In addition, it can be known that SP test is useful test method to evaluate SCC susceptibility for high temperature structural components. 3) When [$\Delta$DBTT]$_sp$ is above 17$17^{\circ}C$ the SCC fracture behavior is definitely observed with SCC susceptibility of above 0.4.

Evaluation of Scc Susceptibility of Welded HAZ in Structual Steel(II) -Frcature Behavior in Cathodic Protection- (강 용접부의 응력부식크랙 감수성 평가에 관한 연구 II -음극방식에서의 파괴거동-)

  • 임재규;조정운;나의균
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.61-74
    • /
    • 1993
  • The cause of corrosion failure found in structures or various components operating in severe corrosive environment has been attributed to stress corrosion cracking(SCC) which is resulting from the combined effects of corrosive environments and static tensile stress. Cathodic protection is an electrochemical method of corrosion control that is widely used in marine environment and primarily on carbon steel. A number of criteria are used to determine whether or not a structure is cathodically protected. In practice, -0.8V versus Ag/AgCl is the most commonly used for marine structures. This paper showed the combined effects of cathodic potential and slow, monotonic straining on the tensile ductility and fracture morphology of parents and friction welded joints for SM45C, SCM440 and SM20C steels in syntheic sea water(S.S.W.,pH:8.2). For the parent materials in cathodic potentials, the higher tensile strength is, the more susceptible SCC is. And the welded HAZ is more susceptible than the parent materials.

  • PDF

Evaluation of SCC Susceptibility of Weld HAZ in Structural Steel(I) -material properties and strain rate- (강용접부의 응력부식크랙감수성 평가에 관한 연구 I -재료특성과 변형률 속도-)

  • 임재규;정대식;정세희
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.48-60
    • /
    • 1993
  • The cause of corrosion failure found in structures or various components operating in severe corrosive environments has been attributed to stress corrosion cracking(SCC)which is resulting from the combined effects of corrosive environments and static tensile stress. Slow strain rate test (SSRT) provides a rapid reliable method to determine SCC susceptibility of metals and alloys for a broad range of application. The chief advantage of SSRT procedures is that it is much more aggressive in producing SCC than conventional constant strain or constant load tests, so that the testing time is considerably reduced. Therefore, in this paper, the combined effects of material properties and strain rate on the tensile ductility and fracture morphology of parents and weldment for SM45C, SCM440 and SM20C steels were examined and discussed in synthetic sea water. The susceptibility of SCC was the most severe under the strain rate of $1.0{\times}10^{-6} sec^{-1}$, and R.O.A. can be used for parent and maximum load for weldment to evaluate the parameter for SCC susceptibility.

  • PDF