• Title/Summary/Keyword: 균열개구

Search Result 123, Processing Time 0.016 seconds

Experimental Evaluation on Shear Strength of High-Strength RC Deep Beams (고강도 철근콘크리트 깊은 보의 전단 강도에 관한 실험평가)

  • Lee, Woo-Jin;Yoon, Seung-Joe;Kim, Seong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.689-696
    • /
    • 2003
  • Recently, Appendix A of ACI 318∼02 Code introduced the Strut-and-Tie Model(STM) procedure in shear design of deep flexural members. The STM procedure is widely used in the design of concrete regions where the distribution of longitudinal strains is significantly nonlinear, such as deep beams, beams with large openings, corbels, and dapped-end beams. Experimental study included five high-strength reinforced concrete deep beams with different detailing schemes for the horizontal and vertical reinforcement. The specimens were designed as simply supported beams subjected to concentrated loads on the top face and supported on the bottom face. At failure, all specimen exhibited primary diagonal crack running from the support region to the point load. Specimens which had mechanical anchorages(terminators) gives better representation of the load-carrying mechanism than the specimen had standard 90-degree anchorage at failure in deep flexural members. Based on the test results, shear design procedures contained in the ACI 318-99 Code, Appendix A of the ACI 318-02 Code, CSA A23.3-94 Code and CIRIA Guide-2 were evaluated. The Shear design of ACI 318-99 Code, Appendix A of the ACI 318-02 Code and CIRIA Guide-2 shown to be conservative predictions from 10% to 36% in the shear strength of the single-span deep beam which was tested. ACI 318-99 Code was the lowest standard deviation.

Intercomparisonn of Techniques for Pressure Tube Inspection of Pressurized heavy Water Reactor (가압 중수로형 원자력발전소 압력관 비파괴검사기술의 상호비교)

  • Lee, Hee-Jong;Kim, Yong-Si;Yoon, Byung-Sik;Lee, Young-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.294-303
    • /
    • 2005
  • This paper describes the analysis results of a series f Round-Robin test that was performed to intercompare inspection and diagnosis techniques for characterization of pressure tube f a pressurized heavy water reactor under the Coordinated Research Project(CRP) of IAEA's nuclear Power Programme. For this test, six nations, Korea, Canada, India, Argentina, Rumania, and China that currently have pressurized heavy water reactors under operation involved, and the "KOR-1" pressure tube sample prepared by Korea was used. Two kinds of NDE technique, ultrasonic and eddy current test, were applied for these tests. The "KOR-1" pressure tube sample contains total 12 artificial flaws such as crack-like EDM notches, wear that is similar to the real flaws and can be produced on the pressure tubes during plant operation. Test results showed that seven laboratories from six nations detected all twelve flaws in "KOR-1" specimen by using ultrasonic and eddy current test methods, and ultrasonic test method was more accurate than eddy current test method in flaw detectin and sizing. ID flaws in pressure tube sample were more easily detected and accurately sized than OD flaws.

Cyclic Behavior of Wall-Slab Joints with Lap Splices of Coldly Straightened Re-bars and with Mechanical Splices (굽힌 후 편 철근의 겹침 이음 및 기계적 이음을 갖는 벽-슬래브 접합부의 반복하중에 대한 거동)

  • Chun, Sung-Chul;Lee, Jin-Gon;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Steel Plate for Rebar Connection was recently developed to splice rebars in delayed slab-wall joints in high-rise building, slurry wall-slab joints, temporary openings, etc. It consists of several couplers and a thin steel plate with shear key. Cyclic loading tests on slab-wall joints were conducted to verify structural behavior of the joints having Steel Plate for Rebar Connection. For comparison, joints with Rebend Connection and without splices were also tested. The joints with Steel Plate for Rebar Connection showed typical flexural behavior in the sequence of tension re-bar yielding, sufficient flexural deformation, crushing of compression concrete, and compression rebar buckling. However, the joints with Rebend Connection had more bond cracks in slabs faces and spalling in side cover-concrete, even though elastic behavior of the joints was similar to that of the joints with Steel Plate for Re-bar Connection. Consequently, the joints with Rebend Connection had less strengths and deformation capacities than the joints with Steel Plate for Re-bar Connection. In addition, stiffness of the joints with Rebend Connection degraded more rapidly than the other joints as cyclic loads were applied. This may be caused by low elastic modulus of re-straightened rebars and restraightening of kinked bar. For two types of diameters (13mm and 16mm) and two types of grades (SD300 and SD400) of rebars, the joints with Steel Plate for Rebar Connection had higher strength than nominal strength calculated from actual material properties. On the contrary, strengths of the joints with Rebend Connection decreased as bar diameter increased and as grade becames higher. Therefore, Rebend Connection should be used with caution in design and construction.