• 제목/요약/키워드: 규칙정확도

검색결과 289건 처리시간 0.022초

실시간 CRM을 위한 분류 기법과 연관성 규칙의 통합적 활용;신용카드 고객 이탈 예측에 활용

  • 이지영;김종우
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 International Conference
    • /
    • pp.135-140
    • /
    • 2007
  • 이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.

  • PDF

경험 규칙에 의한 대명사의 Coreference Resolution (Coreference Resolution of Pronouns by Heuristic Rules)

  • 안영훈;강승식;우종우;윤보현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.193-195
    • /
    • 2001
  • 정보추출과 정보검색 시스템에서 문서의 내용을 보다 정확히 분석하기 위해 3인칭 대명사 \"그/그녀/그들/그녀들\"의 선행사를 결정하는 방법을 제안한다. 일반적으로 3인칭 대명사의 선행사는 현재문장 또는 이전문장의 주어인 경우가 많고, 또한 3인칭 대명사가 2회 이상 반복되는 경우가 자주 발생한다. 이러한 특성을 이용하여 현재 문장과 이전 문장에 출현한 인칭명사들 중에서 선행사로 사용되는 경우를 조사하여 경험적인 방법으로 선행사 결정 규칙을 발견하였다. 이 경험 규칙은 3인칭 대명사의 격에 따라 조금씩 달라지기 때문에 대명사의 격에 따라 \"주격/목적격/소유격\"으로 구분하여 기술하였다. 실험 결과, 3인칭 대명사의 선행사 결정 정확도는 주격, 소유격, 목적격에 대해 각각 88.6%, 90.3%, 81.5%로 나타났다. 90.3%, 81.5%로 나타났다.

  • PDF

웹 데이터 마이닝을 위한 정보 추출패턴의 기계학습 (Machine Learning of Information Extract ion Patterns for Web Data Mining)

  • 김동석;차정원;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.115-122
    • /
    • 2001
  • 정보추출 기법을 논의할 때 핵심 역할을 차지하는 것이 추출 패턴(규칙)을 표현하는 종류와 규칙을 만들어 내는 기계학습의 방법이다. 본 논문에서는 mDTD(modified Document Type Definition)라는 새로운 추출패턴을 제안한다. mDTD는 SGML에서 사용되는 DTD를 구문과 해석 방식을 변형하여 일반적인 HTML에서의 정보추출에 활용되도록 설계하였다. 이러한 개념은 DTD가 문서에 나타나는 객체를 지정하는 역할을 하는 것을 역으로 mDTD를 이용하여 문서에 나타는 객체를 식별하는데 사용하는 것이다. mDTD 규칙을 순차기계학습으로 확장시켜서 한국어와 영어로된 인터넷 쇼핑몰 중에서 AV(Audio and Visual product) 도메인에 적용하여 실험하였다 실험 결과로 정보추출의 평균 정확도은 한국어와 영어에 대해서 각각 91.3%와 81.9%를 얻었다.

  • PDF

심박수변이도 분석을 위한 확률적 지식기반 모형 (A probabilistic knowledge model for analyzing heart rate variability)

  • 손창식;강원석;최락현;박형섭;한성욱;김윤년
    • 한국산업정보학회논문지
    • /
    • 제20권3호
    • /
    • pp.61-69
    • /
    • 2015
  • 본 논문에서는 이산 웨이블릿 변환을 통해 추출된 시간 영역과 주파수 영역의 특징들을 활용하여 심박수변이도를 확률적인 지식으로 분석할 수 있는 방법을 제안하였다. 제안된 방법에서 지식획득 알고리즘은 규칙생성과 규칙평가 단계로 구성되어 있으며, 규칙생성에서는 ROC 분석을 통해 수치적인 속성값을 이산화된 구간으로 변환하고, 서로 다른 의사결정값을 포함하는 구간들 사이에 일관성 정도를 비교함으로써 감축된 규칙-집합을 생성한다. 이때 규칙-집합 내에 각 규칙에 대해서 확률적 해석을 위한 3가지 척도를 추정하였다. 제안된 모형의 효과성은 심혈관질환 병력을 가진 58명의 심전도 데이터로부터 심방세동을 식별할 수 있는 5가지 규칙을 생성하였고, 이들 규칙의 분별력을 평가하였다. 실험결과, 제안된 모형으로부터 생성된 지식은 4가지 성능평가 척도에 대해서 각각 93%의 정확도를 보여주었다.

빅데이터 추천시스템을 위한 과립기반 연관규칙 마이닝 (Granule-based Association Rule Mining for Big Data Recommendation System)

  • 박인규
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.67-72
    • /
    • 2021
  • 연관규칙 마이닝은 여러 테이블에 숨겨진 패턴들의 관계를 나타내주는 방법이다. 요즈음에는 연관규칙 마이닝에 보다 세부적인 의미를 추가하기 위하여 과립화 논리를 이용하고 있다. 또한 기존의 데이터를 이용하여 추천하는 기존의 시스템과는 달리 과립화 연관규칙에서는 신규 가입자나 신규상품에 대한 추천의 경우도 가능하다. 따라서 연관규칙의 과립화의 정성적인 크기를 결정하는 것이 추천 시스템의 성능을 좌우한다. 본 논문에서는 관람자가 평가한 영화에 대한 관계를 파악하기 위하여 퍼지논리와 샤논 엔트로피 개념을 이용하여 관람자와 영화데이터에 대한 과립화 방법을 제안한다. 연구는 관람자와 영화간의 연관규칙의 함의에 결정적인 역할을 하는 데이터의 과립화의 크기를 결정하는 부분과 이러한 과립화를 이용하여 관람자와 영화간의 연관규칙을 추출하는 두 번째 부분으로 구성되어 있으며 넷플릭스의 MovieLens데이터를 이용하여 분석하였다. 최종적으로 도출된 연관규칙의 의미와 추천의 정확도 및 고려해야하는 함의를 제시하였다.

네트워크 침입 탐지를 위한 Coverage와 Exclusion 기반의 새로운 연관 규칙 마이닝 (A New Association Rule Mining based on Coverage and Exclusion for Network Intrusion Detection)

  • 김태연;한경현;황성운
    • 사물인터넷융복합논문지
    • /
    • 제9권1호
    • /
    • pp.77-87
    • /
    • 2023
  • 네트워크 침입 탐지 작업에 다양한 연관 규칙 마이닝 알고리즘을 적용하는 데에는 두 가지 중요한 문제가 있다. 생성된 규칙 집합의 크기가 너무 커서 IoT 시스템에서 활용하기 어렵고, 거짓 부정/긍정 비율을 제어하기 어렵다. 본 연구에서는 coverage와 exclusion이라는 새로 정의된 척도에 기반을 둔 연관 규칙 마이닝 알고리즘을 제안한다. Coverage는 한 클래스의 트랜잭션에서 패턴이 발견되는 빈도를 나타내고, exclusion은 다른 클래스의 트랜잭션에서 패턴이 발견되지 않는 빈도를 나타낸다. 우리는 KDDcup99라는 공개 데이터 세트를 사용하여 가장 유명한 알고리즘인 Apriori 알고리즘과 실험적으로 제안된 알고리즘을 비교한다. Apriori와 비교하여 제안된 알고리즘은 정확도를 완전히 유지하면서 생성되는 규칙 집합 크기를 최대 93.2%까지 줄인다. 또한, 제안된 알고리즘은 생성된 규칙의 거짓 부정/긍정 비율을 매개변수별로 완벽하게 제어한다. 따라서 네트워크 분석가는 두 가지 문제를 해결함으로써 제안한 연관 규칙 마이닝을 네트워크 침입 탐지 작업에 효과적으로 적용할 수 있다.

트리밍 방식 수정을 통한 연관규칙 마이닝 개선 (Improved Association Rule Mining by Modified Trimming)

  • 황원태;김동승
    • 전자공학회논문지CI
    • /
    • 제45권3호
    • /
    • pp.15-21
    • /
    • 2008
  • 본 논문은 2단 샘플링을 통해 정확도는 줄지만 신속하게 연관규칙을 추출하는 새로운 마이닝 알고리즘을 제안한다. 직전 연구인 FAST(Finding Association by Sampling Technique) 기법은 빈발1항목만 최적샘플 형성과정에 적용하여 빈발2항목 및 그이상의 빈발항목을 샘플 추출에 반영하지 못하였다. 이 논문은 그러한 약점을 보완하여 트리밍 과정에서 손실항목과 오류항목의 비중을 동시에 고려하여 다수 빈발항목에 대한 마이닝의 정확성을 높였다. 대표적인 데이터 세트를 써서 실험한 결과 이전연구와 비교해서 동일한 품질하에서 새 알고리즘의 정확도가 향상됨을 확인하였다.

빈발단어집합을 이용한 NaiveBayes의 정확도 개선 (An Improvement of Accuracy for NaiveBayes by Using Large Word Sets)

  • 이재문
    • 인터넷정보학회논문지
    • /
    • 제7권3호
    • /
    • pp.169-178
    • /
    • 2006
  • 본 논문은 연관규칙탐사 기술에서 사용되는 빈발항목집합을 변형하여 문서분류의 문서에서 빈발단어집합을 정의하고, 이를 사용하여 문서분류 방법으로 잘 알려진 NaiveBayes에 적용하여 이 방법의 정확도를 개선한다. 이 기술의 적용을 위하여 하나의 문서는 여러 개의 문단으로 나뉘어졌으며, 각 문단에 나타나는 단어들의 집합을 트랜잭션화하여 빈발단어 집합을 찾을 수 있도록 하였다. 제안한 방법은 Al::Categorizer 프레임워크에서 구현되었으며 로이터-21578 데이터를 사용하여 그 정확도가 측정되었다. 문단에서의 라인수와 학습문서의 크기를 변화하면서 정확도를 측정하였다. 측정된 결과로부터 제안된 방법이 기존의 방법에 비하여 정확도를 개선한다는 사실을 알 수 있었다.

  • PDF

의사결정트리에서 공간사건 예측을 위한 리프노드 등급 결정 방법 분석 (Analysis of Leaf Node Ranking Methods for Spatial Event Prediction)

  • 연영광
    • 한국지리정보학회지
    • /
    • 제17권4호
    • /
    • pp.101-111
    • /
    • 2014
  • 공간사건들은 데이터마이닝 분류알고리즘을 이용하여 예측 가능하며, 의사결정 트리는 대표적인 분류알고리즘들 중 하나로 사용되고 있다. 의사결정 트리는 레이블 값을 갖는 분류작업에 주로 사용되었으나 규칙평가 기법을 트리 리프노드 등급 계산에 응용하면서부터 공간사건 예측에 이용되고 있다. 이 논문에서는 의사결정 트리에서 사용되는 규칙평가 방법들을 공간예측에 적용하여 비교하였다. 실험을 위해 의사결정 트리 알고리즘인 C4.5알고리즘과 규칙 평가기법인 Laplace, M-estimate 및 m-branch 기법들을 구현하여 자연환경에서 발생되는 대표적인 공간예측 응용분야인 산사태에 적용하였다. 적용한 규칙 평가 기법들의 정확도 평가결과, 그 특성에 따라 정확도의 차이가 있었으며 m-branch가 가장 높은 성능을 보였다. 그러나 m-branch 및 M-estimate와 같이 별도의 파라미터를 갖는 경우 반복적으로 최적의 파라미터 값을 찾는 과정을 요구하였다. 따라서 적용 대상에 따라 선택적으로 활용할 수 있다. 이러한 의사결정 트리를 이용한 공간예측은 예측 결과뿐만 아니라 특정 위치에서의 예측결과에 대한 원인분석을 가능하게 함으로 다양한 응용을 가능하게 한다.

말뭉치 오류를 고려한 HMM 한국어 품사 태깅 시스템 (A Korean POS Tagging System with Handling Corpus Errors)

  • 설용수;김동주;김규상;김한우
    • 한국컴퓨터정보학회지
    • /
    • 제15권1호
    • /
    • pp.117-124
    • /
    • 2007
  • 통계 기반 접근 방법을 이용한 품사태깅에서 태깅 정확도는 훈련 데이터의 양에 좌우될 뿐 아니라, 말뭉치가 충분할지라도 수작업으로 구축한 말뭉치의 경우 항상 오류의 가능성을 내포하고 있으며 언어의 특성상 통계적으로 신뢰할만한 데이터의 수집에도 어려움이 따른다. 훈련 데이터로 사용되는 말뭉치는 많은 사람들이 수작업으로 구축하므로 작업자 중 일부가 언어에 대한 지식이 부족하다거나 주관적인 판단에 의한 태깅 실수를 포함할 수도 있기 때문에 단순한 저빈도와 관련된 잡음 외의 오류들이 포함될 수 있는데 이러한 오류들은 재추정이나 평탄화 기법으로 해결될 수 있는 문제가 아니다. 본 논문에서는 HMM(Hidden Markov Model)을 이용한 한국어 품사 태깅에서 재추정 후 여전히 존재하는 말뭉치의 잡음에 인한 태깅 오류 해결을 위해 비터비 알고리즘적용 단계에서 데이터 부족과 말뭉치의 오류로 인해 문제가 되는 부분을 찾아내고 규칙을 통해 수정을 하여 태깅 결과를 개선하는 방안을 제안한다. 실험결과는 오류가 존재하는 말뭉치를 사용하여 구현된 HMM과 비터비 알고리즘을 적용한 태깅 정확도에 비해 오류를 수정하는 과정을 거친 후 정확도가 향상됨을 보여준다.

  • PDF