연관규칙 탐사기법은 트랜잭션을 대상으로 항목간, 또는 속성간의 연관관계를 발견하는 방법으로, 데이터 집합의 구조를 쉽게 통찰할수 있다는 장점으로 인하여 활발히 연구되어져 왔다. 그러나 현재까지의 연구들은 전체 사용자중 공통적인 특성을 지닌 사용자 그룹이 존재할 경우, 그러한 그룹별 연관규칙을 찾아낼 수 없다는 한계점을 지닌다. 본 논문에서는 이러한 점을 해결하기 위하여, 속성선택 및 사용자 구분 기법을 이용하여 사용자를 부분집합으로 구분하고, 그 부분집합별로 연관규칙을 발견한다. 또한 위와 같이 얻어진 연관규칙이 전체 사용자를 대상으로 한 연관규칙보다 해당 부분집합에 더욱 적합하다는 사실을 여러 연관규칙 평가치를 이용하여 평가한다.
본 논문에서는 학습을 이용한 발음 변이 모델링을 통해 특정 영역에 최적화된 발음 사전 자동 생성의 방법을 제시하였다. 학습 방법을 이용한 발음 변이 모델링의 오류를 최소화 하기 위하여 본 논문에서는 발음 변이 규칙의 적응 기법을 도입하였다. 발음 변이 규칙의 적응은 대용량 음성 말뭉치에서 발음 변이 규칙을 유도한 후, 상대적으로 작은 용량의 음성 말뭉치에서 유도한 규칙과의 결합을 통해 이루어 진다. 본 논문에서 사용된 발음 사전은 해당 형태소의 앞 뒤 음소 문맥의 음운 현상을 반영한 발음 사전이며, 학습 방법으로 얻어진 발음 변이 규칙을 대용량 문자 말뭉치에 적용하여 해당 형태소의 발음을 자동 생성하였다. 발음 사전의 평균 발음의 수는 적용된 발음 변이 규칙의 확률 값들의 한계 값 조정에 의해 이루어졌다. 기존의 지식 기반의 발음 사전과 비교 할 때, 본 방법론으로 작성된 발음 사전을 이용한 대화체 음성 인식 실험에서 0.8%의 단어 오류율(WER)이 감소하였다. 또한 사전에 포함된 형태소의 평균 발음 변이 수에서도 기존의 방법론에서 보다 5.6% 적은 수에서 최상의 성능을 보였다.
본 연구에서는 보다 효과적인 기업부도예측을 위하여, 동계적 방법과 인공지능 방법을 결합한 통합모형을 제시하였다. 이를 위하여 통계적인 모형 중에서 가장 널리 활용되고 있는 다변량 판별분석, 로지스틱 회귀분석과 인공 지능적인 방법으로서 최근 널리 사용되고 있는 인공신경망, 규칙유도기법, 베이지안 망의 5가지 방법론을 통합한 Voting with Performance & Weights from ANN(WP-ANN) 통합모형을 제시하였다. 실험결과, 본 연구에서 제안한 WP-ANN 통합모형은 다변량 판별분석, 로지스탁 회귀분석, 인공신경망, 규칙유도기법, 베이지안 망 등의 단일모형과 비교한 결과 가장 예측정확성이 유수한 것으로 나타났다. 따라서 본 연구를 통해 기업부도예측에 있어서 WP-ANN 통합모형이 기존의 모형들에 비해 우수한 예측정확성을 나타냄을 알 수 있었다.
본 연구는 대량의 데이터에서 효율적으로 최적 규칙을 발견하기 위해 개념 계층과 정보 이득 및 라프셋 이론에 딕반한 통합 방법을 제시하고,이를 최적 규칙 발견 시스템으로 구현한다. 본 방법은 데이터베이스에 있는 데이터에서 일반화된 지식을 추출하기 위한 속성중심의 개념 상승 기법과 불필요한 속성 및 속성값을 제거하기 위한 지식 감축 기법을 적용하며, 최적 규칙의 도출을 위해 속성의 중요도를 사용한다. 본 시스템은 먼저, 속성값 개념의 일반화에 의해 종복 튜플을 제거함으로써 데이터 베이스의 크기를 줄이고, 결정속성에 뎡향을 주지않는 조건속성을 제거하여 간략화된 최적 규칙을 유도한다.그리고 실제 데이터에 적용하여 결정 규칙을 유도하고 그 규칙을 새로운 데이터에 테스트햐 봄으로써 새로운 데이터에도 잘 적용됨을 보인다.
본 논문에서는 퍼지라는 개념을 도입하여 기존의 전문가시스템에서 문제점으로 지적되어 온 불확실성, 모호성의 처리 기능을 부가하여 표현의 영역을 확장, 개선하여, 전문가시스템의 추론 엔진을 적용하는 근사적 유사 추론기법을 분석한다. 그리고 규칙의 조건부와 이에 대응하는 사실간의 유사도를 구하여 이들 규칙의 결론부에 반영하여 결론을 유도하는 근사적 유사 추론기법을 제안한다. 또한 이와 같은 이론적인 연구를 바탕으로 자연언어의 많은 부분을 차지하고 있는 퍼지 개념을 지원하는 당뇨병(의료)진단용 전문가시스템을 설계, 구현하여 기존의 불확실성 관리방안의 단점을 개선하고자 한다.
모바일 컨버전스로 대표되는 스마트폰의 등장 이래 급속한 보급으로 국민의 절반이상이 사용하고 있다. 이에 따라 스마트폰에서 구동되는 모바일앱 시장도 빠른 속도로 성장하고 있다. 하지만 스마트폰과 모바일앱에 대한 기존 연구는 대부분 기술 수용 또는 기능 향상 등에만 초점을 맞춰 연구가 진행되었다. 따라서 본 연구는 모바일앱 각각에 대한 촉진 전략을 제시하기 위해 세 단계에 걸쳐 분석이 진행된다. 첫째, 빈도분석을 통해 가장 많이 사용하는 모바일앱을 도출하고 둘째, 연관성 규칙을 통해 모바일앱 간 관계에 대해 알아본다. 마지막으로 규칙유도기법은 앞선 두 단계에서 획득된 5개 모바일앱을 목표 변수로 설정하여, 각 모바일앱별 스마트폰 사용 특성을 도출하였다. 연구에 사용된 변수는 모바일앱 구분 20개와 인구통계학적 변수 및 PC, 영화, 음악, 도서, 게임의 사용 시간 그리고 지불 금액을 변수로 선정하여 총 35개가 사용되었다.
본 연구에서는 속성중심 귀납법에서 사용하는 개념 계층의 상승 기법, 결정트리에 의한 귀납법에서 사용하는 정보 획득량의 측정 기법, 그리고 라프셋에 의한 지식감축 방법을 복합하여 저수준의 데이터를 고수준 정보로 일반화하고, 불필요한 속성들을 감축하여 간략화된 결정규칙을 도출하는 통합방법의 지식 발견 시스템을 시험적으로 구현했다. 여기서 추출한 최소화 결정 규칙은 대규모 데이터베이스에서 추출할수 있는 유용한 지식으로 의사결정에 사용하는 정보가 된다. 생성된 규칙지식은 각기 방법들보다 간결하다. 그리고 개념 일반화에 의해 유도된 지식이 고수준의 추상으로 표현된다.
연관규칙 탐사기법은 트랜잭션들을 대상으로 항목간 또는 속성간의 연관관계를 발견하는 방법으로, 데이터 집합의 구조를 쉽게 통찰할 수 있다는 장점으로 인하여 활발히 연구되어 왔다. 그러나 현재까지의 연구들은 전체 사용자 중 공통적인 특성을 지닌 사용자 그룹이 존재할 경우, 이러한 그룹별 연관규칙을 찾아낼 수 없다는 한계점을 지닌다. 본 논문에서는 이러한 점을 해결하기 위하여, 속성선택 및 사용자 구분 기법을 이용하여 사용자를 부분집합으로 구분하고 그 부분집합별로 연관규칙을 발견한다. 또한 위와 같이 얻어진 지역적 연관규칙이 전체 사용자를 대상으로 한 전역적 연관규칙보다 해당 부분집합에 더욱 적합하다는 사실을 여러 연관규칙 평가치를 이용하여 평가한다.
공간데이터의 일반화는 기존에 구축된 공간 데이터베이스로부터 새로운 소축척 데이터베이스를 유도할 수 있는 중요한 GIS 기법이다. 공간데이터의 일반화는 공간데이터의 기하 및 속성데이터를 변형[3, 15] 시킬 뿐만 아니라, 데이터 모델의 관계를 따라서 연결되어 있는 다른 공간데이터도 변형[8-10, 14]시킨다. 이것을 공간데이터 일반화의 파급이라고 한다. 이 파급을 처리하지 않은 채 일반화를 계속 진행하면, 일관성 혹은 원시데이터베이스 정보 중의 일부가 손실된 채 새로운 데이터베이스가 생성될 수 있다. 그럼에도 불구하고 일반화에 관한 기존 연구들은 공간데이터의 상호관계를 무시한 채 독립된 하나의 공간데이터에 대한 유도를 위해서 방법들을 제시해 왔다. 그리고 그 결과 공간데이터의 기하 및 속성을 변형시키는 많은 일반화 연산자들이 제시되어졌다. 본 연구는 이 일반화 연산자들이 어떤 공간데이터에 적용되었을 때 그와 관련된 다른 공간데이터에도 파급 적용될 수 있도록, 일반화 연산자를 확장을 시킬 것이다. 이 일반화 파급을 처리하기 위해서, 본 연구는 일반화 과정에서 반드시 고려될 필요가 있는 규칙들을 제시한다. 그리고 일반화 연산자들이 반드시 준수해야 하는 규칙들을 기술한다. 이 규칙들은 관계대수로서 표현될 수 있으므로, SQL로 쉽게 전환할 수 있다. 이 확장된 일반화 연산자들의 적합성을 검토하기 위해서 간단한 프로토타입을 구현하였다.
XML은 인터넷 상에서 복잡한 문서의 원활한 처리와 신속한 탐색 및 항해가 가능한 차세대 웹 언어로 각광받고 있다. XML로 표현된 문서들은 세분화된 계층구조(granularity hierarchy)로 나타낼 수 있으므로 필요한 구성 요소에만 엑세스 제어가 가능하다는 장점이 있다. 묵시적 권한 부여 기법은 명시적으로 저장된 권한으로부터 유도되는 권한기법으로 모든 구성 요소들에 대해 규칙들을 명시적으로 저장해야 하는 비효율적인 명시적 권한부여 기법보다 상위 구성 요소에 대한 한번의 권한 부여로 하위 구성 요소들에 동일한 권한부여 효과를 얻을 수 있다. 본 논문은 XML 문서를 위한 묵시적 권한 부여 기법을 제시하여 XML 문서의 엑세스 제어 시 권한 부여 시간 및 메모리의 효율성을 높인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.