• Title/Summary/Keyword: 규칙기반 방법

Search Result 1,170, Processing Time 0.031 seconds

A Study on the Algorithm for Rule-based Routing Configuration Fault Diagnosis (규칙 기반 라우팅 구성 장애 진단 알고리즘에 관한 연구)

  • Hwang, Tae-In;Cho, Kang-Hong;Chung, Jin-Wook
    • Annual Conference of KIPS
    • /
    • 2000.04a
    • /
    • pp.528-531
    • /
    • 2000
  • 이 논문에서는 시스템의 라우팅 구성 장애를 진단하기 위한 규칙과 알고리즘을 제시하였다. 라우팅 구성 장애 관리를 위하여 네트워크 구성 관리 규칙, 라우팅 구성 장애 진단 규칙을 제안하였으며 후향 추론 알고리즘을 기반으로 이런 규칙간의 상호 연동을 위하여 메타 규칙을 적용하였다. 제안한 규칙과 알고리즘을 시나리오에 기반하여 규칙, Blackboard, 목표의 변화 과정을 보여줌으로써 실험 결과를 제시하였다. 시스템의 TCP/IP 네트워크 구성 관리와 관련하여 시스템에서 발생할 수 있는 네트워크 장애들 중에서 라우팅 구성 장애를 진단하기 위한 규칙 및 추론 알고리즘을 제안함으로써 이질적이고 급변하는 네트워크 환경에 쉽게 대처할 수 있는 시스템 개발을 위한 방법론을 제시하고자 한다

  • PDF

Korean Morphological Analyzer and POS Tagger Just Using Finite-State Transducers (유한상태변환기만을 이용한 한국어 형태소 분석 및 품사 태깅)

  • Park, Won-Byeong;Kim, Jae-Hoon
    • Annual Conference of KIPS
    • /
    • 2006.11a
    • /
    • pp.165-168
    • /
    • 2006
  • 이 논문은 유한상태변환기만을 이용하여 한국어 형태소 분석 및 품사 태깅 시스템을 제안한다. 기존의 한국어 형태소 분석 시스템들은 규칙기반 형태소 분석기가 주를 이루고 한국어 품사 태깅 시스템은 은닉마르코프 모델 기반 품사 태깅이 주를 이루었다. 한국어 형태소 분석의 경우 유한상태변환기를 이용한 경우도 있었으나, 이 방법은 변환기를 작성하기 위한 규칙을 수작업으로 구축해야 하며, 그 규칙에 따라서 사전이 작성되어야 한다. 이 논문에서는 품사 태깅 말뭉치를 이용해서 유한상태변환기에서 필요한 모든 변환 규칙을 자동으로 추출한다. 이런 방법으로 네 종류의 변환기, 즉, 자소분리변환기, 단어분리변환기, 단어형성변환기, 품사결정변환기를 자동으로 구축한다. 구축된 변환기들은 결합연산(composition operation)을 이용하여 하나의 유한상태변환기를 구성하여 한국어 형태소 분석과 동시에 한국어 품사 태깅을 수행한다. 이 방법은 하나의 유한상태변환기만을 이용하기 때문에 복잡도는 선형시간(linear complexity)을 가지면, 형태소 분석기와 품사 태깅 시스템을 매우 짧은 시간 내에 개발 할 수 있었다.

  • PDF

POS-Tagging Model Combining Rules and Word Probability (규칙과 어절 확률을 이용한 혼합 품사 태깅 모델)

  • Hwang, Myeong-Jin;Kang, Mi-Young;Kwon, Hyuk-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.11-15
    • /
    • 2006
  • 본 논문은, 긍정적 가중치와 부정적 가중치를 통해 표현되는 규칙에 기반을 둔 품사 태깅 모델과, 형태 소 unigram 정보와 어절 내의 카테고리 패턴에 기반하여 어절 확률을 추정하는 품사 태깅 모델의 장점을 취하고 단점을 보완할 수 있는 혼합 품사 태깅 모델을 제안한다. 이 혼합 모델은 먼저, 규칙에 기반한 품사 태깅을 적용한 후, 규칙이 해결하지 못한 결과에 대해서 통계적인 기법을 사용하여 품사 태깅을 한다. 본 연구는 어절 내 카테고리 패턴정보에 따른 파라미터 set과 형태소 unigram만을 이용해 어절 확률을 계산해 내므로 다른 통계기반 접근방법에서와는 달리 작은 크기의 통계사전만을 필요로 하며, 카테고리 패턴 정보를 사용함으로써 통계기반 접근 방법의 가장 큰 문제점인 data sparseness 문제 또한 줄일 수 있다는 이점이 있다. 특히, 본 논문에서 사용할 통계 모델은 어절 확률에 기반을 두고 있기 때문에 한국어의 특성을 잘 반영할 수 있다. 본 논문에서 제안한 혼합 모델은 규칙이 적용된 후에도 후보열이 둘 이상 남아 오류로 반환되었던 어절 중 24%를 개선한다.

  • PDF

Selection Method of Fuzzy Partitions in Fuzzy Rule-Based Classification Systems (퍼지 규칙기반 분류시스템에서 퍼지 분할의 선택방법)

  • Son, Chang-S.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.360-366
    • /
    • 2008
  • The initial fuzzy partitions in fuzzy rule-based classification systems are determined by considering the domain region of each attribute with the given data, and the optimal classification boundaries within the fuzzy partitions can be discovered by tuning their parameters using various learning processes such as neural network, genetic algorithm, and so on. In this paper, we propose a selection method for fuzzy partition based on statistical information to maximize the performance of pattern classification without learning processes where statistical information is used to extract the uncertainty regions (i.e., the regions which the classification boundaries in pattern classification problems are determined) in each input attribute from the numerical data. Moreover the methods for extracting the candidate rules which are associated with the partition intervals generated by statistical information and for minimizing the coupling problem between the candidate rules are additionally discussed. In order to show the effectiveness of the proposed method, we compared the classification accuracy of the proposed with those of conventional methods on the IRIS and New Thyroid Cancer data. From experimental results, we can confirm the fact that the proposed method only considering statistical information of the numerical patterns provides equal to or better classification accuracy than that of the conventional methods.

Domain Knowledge Incorporated Local Rule-based Explanation for ML-based Bankruptcy Prediction Model (머신러닝 기반 부도예측모형에서 로컬영역의 도메인 지식 통합 규칙 기반 설명 방법)

  • Soo Hyun Cho;Kyung-shik Shin
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.105-123
    • /
    • 2022
  • Thanks to the remarkable success of Artificial Intelligence (A.I.) techniques, a new possibility for its application on the real-world problem has begun. One of the prominent applications is the bankruptcy prediction model as it is often used as a basic knowledge base for credit scoring models in the financial industry. As a result, there has been extensive research on how to improve the prediction accuracy of the model. However, despite its impressive performance, it is difficult to implement machine learning (ML)-based models due to its intrinsic trait of obscurity, especially when the field requires or values an explanation about the result obtained by the model. The financial domain is one of the areas where explanation matters to stakeholders such as domain experts and customers. In this paper, we propose a novel approach to incorporate financial domain knowledge into local rule generation to provide explanations for the bankruptcy prediction model at instance level. The result shows the proposed method successfully selects and classifies the extracted rules based on the feasibility and information they convey to the users.

Effective Korean Speech-act Classification Using the Classification Priority Application and a Post-correction Rules (분류 우선순위 적용과 후보정 규칙을 이용한 효과적인 한국어 화행 분류)

  • Song, Namhoon;Bae, Kyoungman;Ko, Youngjoong
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.80-86
    • /
    • 2016
  • A speech-act is a behavior intended by users in an utterance. Speech-act classification is important in a dialogue system. The machine learning and rule-based methods have mainly been used for speech-act classification. In this paper, we propose a speech-act classification method based on the combination of support vector machine (SVM) and transformation-based learning (TBL). The user's utterance is first classified by SVM that is preferentially applied to categories with a low utterance rate in training data. Next, when an utterance has negative scores throughout the whole of the categories, the utterance is applied to the correction phase by rules. The results from our method were higher performance over the baseline system long with error-reduction.

Automatic Generation of Domain-Dependent Pronunciation Lexicon with Data-Driven Rules and Rule Adaptation (학습을 통한 발음 변이 규칙 유도 및 적응을 이용한 영역 의존 발음 사전 자동 생성)

  • Jeon, Je-Hun;Chung, Min-Hwa
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2005.05a
    • /
    • pp.233-238
    • /
    • 2005
  • 본 논문에서는 학습을 이용한 발음 변이 모델링을 통해 특정 영역에 최적화된 발음 사전 자동 생성의 방법을 제시하였다. 학습 방법을 이용한 발음 변이 모델링의 오류를 최소화 하기 위하여 본 논문에서는 발음 변이 규칙의 적응 기법을 도입하였다. 발음 변이 규칙의 적응은 대용량 음성 말뭉치에서 발음 변이 규칙을 유도한 후, 상대적으로 작은 용량의 음성 말뭉치에서 유도한 규칙과의 결합을 통해 이루어 진다. 본 논문에서 사용된 발음 사전은 해당 형태소의 앞 뒤 음소 문맥의 음운 현상을 반영한 발음 사전이며, 학습 방법으로 얻어진 발음 변이 규칙을 대용량 문자 말뭉치에 적용하여 해당 형태소의 발음을 자동 생성하였다. 발음 사전의 평균 발음의 수는 적용된 발음 변이 규칙의 확률 값들의 한계 값 조정에 의해 이루어졌다. 기존의 지식 기반의 발음 사전과 비교 할 때, 본 방법론으로 작성된 발음 사전을 이용한 대화체 음성 인식 실험에서 0.8%의 단어 오류율(WER)이 감소하였다. 또한 사전에 포함된 형태소의 평균 발음 변이 수에서도 기존의 방법론에서 보다 5.6% 적은 수에서 최상의 성능을 보였다.

  • PDF

Design and Application of Genetic-Fuzzy System based on Grammatical Encoding (문법 코딩에 기반한 유전적 퍼지 시스템의 설계 및 응용)

  • Gil, Jun-Min;Go, Myeong-Suk;Hwang, Jong-Seon
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.1
    • /
    • pp.31-45
    • /
    • 2001
  • 퍼지 시스템의 설계시, 퍼지 시스템의 성능 저하 없이 최적의 퍼지 규칙 선택과 퍼지 소속 함수의 단순한 정의는 매우 중요하다. 이러한 목적을 이루기 위해서, 본 논문에서는 입력 공간에 강한 영향을 보이는 퍼지 규칙만을 퍼지 규칙으로 선택함으로써 입력 공간의 증가에 유연하게 대처할 수 있는 퍼지 규칙 구조를 제안한다. 또한, 유전자 알고리즘의 진화 탐색을 통하여 퍼지 시스템의 최적화된 구조를 얻기 위해서 퍼지 시스템의 구조를 생성시키는 문법 규칙을 해개체로 코딩하는 문법 코딩을 이용한 유전적 퍼지 시스템을 제안한다. 문법 규칙은 퍼지 규칙의 복잡한 구조를 단순한 모듈 구조로 표현하므로 문법 규칙의 코딩은 유전자 알고리즘의 빠른 수렴과 효율적인 탐색을 보장한다. 아울러, 제안하는 방법을 많은 입력 공간을 갖는 아이리스 데이타(Iris data) 문제와 시간열 예측(time series prediction) 문제에 적용함으로써 제안하는 방법의 응용성을 보이고 성능을 분석한다. 실험 결과, 제안하는 방법이 직접 코딩을 사용한 다른 설계 방법보다 더 좋은 성능을 보여 주었다.

  • PDF

Fuzzy System Modeling Using New Hierarchical Structure (새로운 계층 구조를 이용한 퍼지 시스템 모델링)

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.405-410
    • /
    • 2002
  • In this paper, fuzzy system modeling using new hierarchical structure is suggested for the complex and uncertain system. The proposed modeling technique Is to decompose the fuzzy rule base structure into the above-rule base and the sub-rule base. By applying hierarchical fuzzy rules, they can be used efficiently and logically. Also, hieratical fuzzy rules can improve the accuracy and the transparency of structure in the fuzzy system. The genetic algorithm is applied for optimization of the parameters and the structure of the fuzzy rules. To show the effectiveness of the proposed method, fuzzy modeling of the complex nonlinear system is provided.

Abnormality Detection of ECG Signal by Rule-based Rhythm Classification (규칙기반 리듬 분류에 의한 심전도 신호의 비정상 검출)

  • Ryu, Chun-Ha;Kim, Sung-Oan;Kim, Se-Yun;Kim, Tae-Hun;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.405-413
    • /
    • 2012
  • Low misclassification performance is significant with high classification accuracy for a reliable diagnosis of ECG signals, and diagnosing abnormal state as normal state can especially raises a deadly problem to a person in ECG test. In this paper, we propose detection and classification method of abnormal rhythm by rule-based rhythm classification reflecting clinical criteria for disease. Rule-based classification classifies rhythm types using rule-base for feature of rhythm section, and rule-base deduces decision results corresponding to professional materials of clinical and internal fields. Experimental results for the MIT-BIH arrhythmia database show that the applicability of proposed method is confirmed to classify rhythm types for normal sinus, paced, and various abnormal rhythms, especially without misclassification in detection aspect of abnormal rhythm.