• Title/Summary/Keyword: 규칙기반 모델

Search Result 610, Processing Time 0.029 seconds

Construction of Robust Bayesian Network Ensemble using a Speciated Evolutionary Algorithm (종 분화 진화 알고리즘을 이용한 안정된 베이지안 네트워크 앙상블 구축)

  • Yoo Ji-Oh;Kim Kyung-Joong;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1569-1580
    • /
    • 2004
  • One commonly used approach to deal with uncertainty is Bayesian network which represents joint probability distributions of domain. There are some attempts to team the structure of Bayesian networks automatically and recently many researchers design structures of Bayesian network using evolutionary algorithm. However, most of them use the only one fittest solution in the last generation. Because it is difficult to combine all the important factors into a single evaluation function, the best solution is often biased and less adaptive. In this paper, we present a method of generating diverse Bayesian network structures through fitness sharing and combining them by Bayesian method for adaptive inference. In order to evaluate performance, we conduct experiments on learning Bayesian networks with artificially generated data from ASIA and ALARM networks. According to the experiments with diverse conditions, the proposed method provides with better robustness and adaptation for handling uncertainty.

Design of customized product recommendation model on correlation analysis when using electronic commerce (전자상거래 이용시 연관성 분석을 통한 맞춤형 상품추천 모델 설계)

  • Yang, MingFei;Park, Kiyong;Choi, Sang-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.203-216
    • /
    • 2022
  • In the recent business environment, purchase patterns are changing around the influence of COVID-19 and the online market. This study analyzed cluster and correlation analysis based on purchase and product information. The cluster analysis of new methods was attempted by creating customer, product, and cross-bonding clusters. The cross-bonding cluster analysis was performed based on the results of each cluster analysis. As a result of the correlation analysis, it was analyzed that more association rules were derived from a cross-bonding cluster, and the overlap rate was less. The cross-bonding cluster was found to be highly efficient. The cross-bonding cluster is the most suitable model for recommending products according to customer needs. The cross-bonding cluster model can save time and provide useful information to consumers. It is expected to bring positive effects such as increasing sales for the company.

A Sentence Reduction Method using Part-of-Speech Information and Templates (품사 정보와 템플릿을 이용한 문장 축소 방법)

  • Lee, Seung-Soo;Yeom, Ki-Won;Park, Ji-Hyung;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.5
    • /
    • pp.313-324
    • /
    • 2008
  • A sentence reduction is the information compression process which removes extraneous words and phrases and retains basic meaning of the original sentence. Most researches in the sentence reduction have required a large number of lexical and syntactic resources and focused on extracting or removing extraneous constituents such as words, phrases and clauses of the sentence via the complicated parsing process. However, these researches have some problems. First, the lexical resource which can be obtained in loaming data is very limited. Second, it is difficult to reduce the sentence to languages that have no method for reliable syntactic parsing because of an ambiguity and exceptional expression of the sentence. In order to solve these problems, we propose the sentence reduction method which uses templates and POS(part of speech) information without a parsing process. In our proposed method, we create a new sentence using both Sentence Reduction Templates that decide the reduction sentence form and Grammatical POS-based Reduction Rules that compose the grammatical sentence structure. In addition, We use Viterbi algorithms at HMM(Hidden Markov Models) to avoid the exponential calculation problem which occurs under applying to Sentence Reduction Templates. Finally, our experiments show that the proposed method achieves acceptable results in comparison to the previous sentence reduction methods.

A Development of a Framework for Building Knowledge based Augmented Reality System (지식기반 증강현실 시스템 구축을 위한 프레임워크 개발)

  • Woo, Chong-Woo;Lee, Doo-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.49-58
    • /
    • 2011
  • Augmented Reality(AR) assists human's cognitive ability through the information visualization by substantiating information about virtual situation. This technology is studied in a variety of ways including education, design, industry, and so on, by various supply of information devices equipped with cameras and display monitors. Since the most of the AR system depends on limited interaction that responds to the order from user, it can not reflect diverse real world situation. In this study, we suggest a knowledge based augmented reality system, which is composed of context awareness agent that provides recognized context information, along with knowledge based component that provides intelligent capability by utilizing domain knowledges. With this capability, the augmented object can generate dynamic model intelligently by reflecting context information, and can make the interaction possible among the multiple objects. We developed rule based context awareness system along with 3D model generation, and tested interaction among the augmented objects. And we suggest a framework that can provide a convenient way of developing augmented reality system for user.

A Study on the Acquisition of Usage Statistics based on SUSHI Project (SUSHI 기반 학술정보 이용통계 수집 모델 연구)

  • Kim, Sun-Tae;Lim, seok-Jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.35-39
    • /
    • 2007
  • Recently Usage statistics are widely available from online content providers. However. the statistics are not yet available in a consistent data container and the administrative cost of individual provider-by-provider downloads is high. The Standardized Usage Statistics Harvesting Initiative (SUSHI) is developing an automated request and response protocol for moving Project COUNTER (Counting Online Usage of Networked Electronic Resources) Code of Practice usage statistics from providers to library electronic repositories. SUSHI will help libraries make better decisions by reducing the administrative overhead of using Project COUNTER statistics. Publishers in the recording and exchange of usage statistics for electronic resources, initially journals and databases. By following COUNTER's Code of Practice, vendors can provide library customers with Excel or CSV (comma delimited) files of usage data using COUNTER's standardized formats and data elements. The result is a consistent, credible, and compatible set of usage data from multiple content providers. On this study, We propose the acquisition model of usage data based on SUSHI for KESLI that is overseas electronic journal consortium in korea.

  • PDF

A Study on Information Systematization of Detail Drawings for Connectivity between BIM Libraries and Technical Contents based on Information Framework (BIM 라이브러리-기술콘텐츠 연계를 위한 정보프레임워크 기반의 정보 체계화 연구-부분상세를 중심으로)

  • Jo, Chan-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.54-60
    • /
    • 2016
  • Building information modeling (BIM) has the advantage of having been utilized for various scenarios through a single model. Although extracting 2D drawings from BIM is one of the advantages, there are many difficulties when utilized in practical work. Architectural detail drawings are an important factor for expressing interior finishing materials and complicated construction methods, as well as for cost estimations. However, creating detail drawings does not have a standard, and each design company establishes its own detail drawings, so it is hard to share or exchange information in the construction industry. Therefore, this study suggests a systemized method for making detail drawings, and explains how it can be utilized as back data for quantity take-off and construction expenses linked with BIM libraries.

Speech Animation Synthesis based on a Korean Co-articulation Model (한국어 동시조음 모델에 기반한 스피치 애니메이션 생성)

  • Jang, Minjung;Jung, Sunjin;Noh, Junyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.49-59
    • /
    • 2020
  • In this paper, we propose a speech animation synthesis specialized in Korean through a rule-based co-articulation model. Speech animation has been widely used in the cultural industry, such as movies, animations, and games that require natural and realistic motion. Because the technique for audio driven speech animation has been mainly developed for English, however, the animation results for domestic content are often visually very unnatural. For example, dubbing of a voice actor is played with no mouth motion at all or with an unsynchronized looping of simple mouth shapes at best. Although there are language-independent speech animation models, which are not specialized in Korean, they are yet to ensure the quality to be utilized in a domestic content production. Therefore, we propose a natural speech animation synthesis method that reflects the linguistic characteristics of Korean driven by an input audio and text. Reflecting the features that vowels mostly determine the mouth shape in Korean, a coarticulation model separating lips and the tongue has been defined to solve the previous problem of lip distortion and occasional missing of some phoneme characteristics. Our model also reflects the differences in prosodic features for improved dynamics in speech animation. Through user studies, we verify that the proposed model can synthesize natural speech animation.

Data Bias Optimization based Association Reasoning Model for Road Risk Detection (도로 위험 탐지를 위한 데이터 편향성 최적화 기반 연관 추론 모델)

  • Ryu, Seong-Eun;Kim, Hyun-Jin;Koo, Byung-Kook;Kwon, Hye-Jeong;Park, Roy C.;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.1-6
    • /
    • 2020
  • In this study, we propose an association inference model based on data bias optimization for road hazard detection. This is a mining model based on association analysis to collect user's personal characteristics and surrounding environment data and provide traffic accident prevention services. This creates transaction data composed of various context variables. Based on the generated information, a meaningful correlation of variables in each transaction is derived through correlation pattern analysis. Considering the bias of classified categorical data, pruning is performed with optimized support and reliability values. Based on the extracted high-level association rules, a risk detection model for personal characteristics and driving road conditions is provided to users. This enables traffic services that overcome the data bias problem and prevent potential road accidents by considering the association between data. In the performance evaluation, the proposed method is excellently evaluated as 0.778 in accuracy and 0.743 in the Kappa coefficient.

The Analysis and Design of Advanced Neurofuzzy Polynomial Networks (고급 뉴로퍼지 다항식 네트워크의 해석과 설계)

  • Park, Byeong-Jun;O, Seong-Gwon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.18-31
    • /
    • 2002
  • In this study, we introduce a concept of advanced neurofuzzy polynomial networks(ANFPN), a hybrid modeling architecture combining neurofuzzy networks(NFN) and polynomial neural networks(PNN). These networks are highly nonlinear rule-based models. The development of the ANFPN dwells on the technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks and genetic algorithms. NFN contributes to the formation of the premise part of the rule-based structure of the ANFPN. The consequence part of the ANFPN is designed using PNN. At the premise part of the ANFPN, NFN uses both the simplified fuzzy inference and error back-propagation learning rule. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. As the consequence structure of ANFPN, PNN is a flexible network architecture whose structure(topology) is developed through learning. In particular, the number of layers and nodes of the PNN are not fixed in advance but is generated in a dynamic way. In this study, we introduce two kinds of ANFPN architectures, namely the basic and the modified one. Here the basic and the modified architecture depend on the number of input variables and the order of polynomial in each layer of PNN structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the ANFPN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed ANFPN can produce the model with higher accuracy and predictive ability than any other method presented previously.

Development of Intelligent Multi-Agent in the Game Environment (게임 환경에서의 지능형 다중 에이전트 개발)

  • Kim, DongMin;Choi, JinWoo;Woo, ChongWoo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.69-78
    • /
    • 2015
  • Recently, research on the multi-agent system is developed actively in the various fields, especially on the control of complex system and optimization. In this study, we develop a multi-agent system for NPC simulation in game environment. The purpose of the development is to support quick and precise decision by inferencing the situation of the dynamic discrete domain, and to support an optimization process of the agent system. Our approach employed Petri-net as a basic agent model to simplify structure of the system, and used fuzzy inference engine to support decision making in various situation. Our experimentation describes situation of the virtual battlefield between the NPCs, which are divided two groups, such as fuzzy rule based agent and automata based agent. We calculate the percentage of winning and survival rate from the several simulations, and the result describes that the fuzzy rule based agent showed better performance than the automata based agent.