• Title/Summary/Keyword: 규준 적용

Search Result 181, Processing Time 0.027 seconds

A Study on the Evaluation of Member Buckling Performance of Space Frame Structures (스페이스 프레임 구조물의 부재좌굴성능 평가방안 연구)

  • Kang, Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.176-182
    • /
    • 2018
  • The purpose of this study was to investigate the safety and rationality of buckling strength and length coefficient by comparing with the design standards of domestic and foreign compression materials based on the buckling test results of circular steel pipe with ball joints. The types of round steel pipes selected for buckling performance evaluation were ø$48.6{\times}2.8t$, ø$60.5{\times}3.2t$ and ø$76.3{\times}3.2t$. For the design of domestic and foreign compression materials, Korea 's Load Resistance and Factor Design, Japan' s Limit State Design, and British Standard BS5950 standard were applied. In this study, we compared and analyzed the buckling performance between the experimental results of the previous research and the domestic and foreign design standards. The results were summarized as follows. As a result of applying the full length of the member to the buckling length in the compression materials design standards of each country, it was 64-89% of the buckling strength by the experiment. Therefore, it is deemed desirable to perform the member design according to the current design standard formula for safety. Experimental results show that the measured buckling strength was 1.02-1.43 times higher than the buckling strength of pure cylindrical steel tubes in the design standards of Korea, Japan and the United Kingdom compression materials. Consequently, it seemed that the buckling strength of individual member in the design of space frame structure should be considered buckling coefficient as the length of pure round steel pipe rather than the length of inter-node.

An Optimality Criteria applied to the Design of Plane Frames (평면 뼈대 구조물의 설계에 적용된 최적규준)

  • 정영식;김봉익;김창규
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.121-131
    • /
    • 1996
  • This work proposes an optimality criteria applicable to the optimum design of plane frames subject to multiple behavioral constraints on member stresses and lateral displacements of nodes and also to side constraints on design variables. The method makes use of a first order approximation for both deflection and stress constraints instead of the zero order approximation based on the concept of FSD (fully stressed design). A redesign algorithm is derived from a mathematically rigorous method which uses the Newton-Raphson method to solve the system of nonlinear constraint equations and reduces the design space whenever minimum size restrictions become active. When applied to worked examples it proved more accurate and efficient, and it is often found that optimum designs are not fully stressed designs. This fact suggests that this rigorous method is worth what it claims for complicated computing and thus had better replace the crude stress ratio algorithm adopted by the majority of optimality criteria approaches. This is particularly true as long as we enjoy ever-increasing computing power at negligible costs.

  • PDF

Evaluation on Shear Behaviors of the Dapped Ends of Domestic Composite Double Tee Slabs under the Short-Term Loading (단기하중하의 국내 합성 더블티 슬래브 댑단부 전단거동 평가)

  • 유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.774-781
    • /
    • 2002
  • Shear behaviors of eight dapped ends of four full-scale domestic single-tee slabs were evaluated. The dapped ends with 10cm topping concrete were designed based on live load requirements for the domestic parking lot of m 500kgf/㎡ and for the large market of 1,200 kgf/㎡. All specimens were designed by the ACI 318-99 design. The variations of the experiment were the shape of hanger reinforcements as followings: 1) general PCI design method(currently used in domestic), 2) 90 degree bent-up, 3) 60 degree bent-up. All experiments were conducted with 1.2 m shear span. The results obtained in this study were 1) all specimens fully complied with the shear strength requirements as specified by ACI 318-99 except for one strand bond slip specimen, 2)a specimen with the 60 degree bent up hanger reinforcing detail showed the best shear behaviors under full service and ultimate load, and 3)a specimen with the 90 degree bent up hanger reinforcing detail resulted in the worst shear behaviors.

The Clinical Utility of Korean Bayley Scales of Infant and Toddler Development-III - Focusing on using of the US norm - (베일리영유아발달검사 제3판(Bayley-III)의 미국 규준 적용의 문제: 미숙아 집단을 대상으로)

  • Lim, Yoo Jin;Bang, Hee Jeong;Lee, Soonhang
    • Korean journal of psychology:General
    • /
    • v.36 no.1
    • /
    • pp.81-107
    • /
    • 2017
  • The study aims to investigate the clinical utility of Bayley-III using US norm in Korea. A total of 98 preterm infants and 93 term infants were assessed with the K-Bayley-III. The performance pattern of preterm infants was analyzed with mixed design ANOVA which examined the differences of scaled scores and composite scores of Bayley-III between full term- and preterm- infant group and within preterm infants group. Then, We have investigated agreement between classifications of delay made using the BSID-II and Bayley-III. In addition, ROC plots were constructed to identify a Bayley-III cut-off score with optimum diagnostic utility in this sample. The results were as follows. (1) Preterm infants have significantly lower function levels in areas of 5 scaled scores and 3 developmental indexes compared with infants born at term. Significant differences among scores within preterm infant group were also found. (2) Bayley-III had the higher scores of the Mental Development Index and Psychomotor Developmental Index comparing to the scores of K-BSID-II, and had the lower rates of developmental delay. (3) All scales of Bayley-III, Cognitive, Language and Motor scale had the appropriate level of discrimination, but the cut-off composite scores of Bayley-III were adjusted 13~28 points higher than 69 for prediction of delay, as defined by the K-BSID-II. It explains the lower rates of developmental delay using the standard of two standard deviation. This study has provided empirical data to inform that we must careful when interpreting the score for clinical applications, identified the discriminating power, and proposed more appropriate cut-off scores. In addition, discussion about the sampling for making the Korean norm of Bayley-III was provided. It is preferable that infants in Korea should use our own validated norms. The standardization process to get Korean normative data must be performed carefully.

Interface Fracture and Crack Propagation in Concrete : Fracture Criteria and Numerical Simulation (콘크리트의 계면 파괴와 균열 전파 : 파괴규준과 수치모의)

  • 이광명
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.235-243
    • /
    • 1996
  • The mechanical behavior ot concrete is strongly influenced by various scenarios of crack initiation and crack propagation. Recently. the study of the interface fracture and cracking in interfacial regions is emerged as an important field, in the context of the developement of high performance concrete composites. The crack path criterion for elastically homogeneous materials is not valid when the crack advances at an interface because. in this case, the consideration of the relative magnitudes of the fracture toughnesses between the constituent materials and the interface are involved. In this paper, a numerical method is presented to obtain the values of two interfacial fracture parameters such as the energy release rate and the phase angle at the tip of an existing interface crack. Criteria based on energy release rate concepts are suggested for the prediction of crack growth at the interfaces and an hybrid experimental-numerical study is presented on the two-phase beam composite models containing interface cracks to investigate the cracking scenarios in interfacial regions. In general, good agreement between the experimental results and the prediction from the criteria is obtained.

Strength Anisotropy through Artificial Weak Plane of Mudstone (인공연약면을 따른 이암의 강도이방성에 관한 연구)

  • Lee, Young-Huy;Jeong, Ghang-Bok
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.111-120
    • /
    • 2008
  • The characteristic of induced anisotropy is investigated in this study for the Pohang mudstone involving the cut plane discontinuity. The uniaxial and triaxial compression tests are performed for anisotropic rocks with artificial joint to look into anisotropic strength characteristics. Both the uniaxial compressive strength and triaxial compressive strength show the lowest value at the angle of cut plane, ${\beta}=30^{\circ}$ and the shoulder type of anisotropy is obtained. Anisotropy ratio (Rc) in uniaxial compression measures 9.0, whereas Rc=1.29-1.98 in triaxial compression is appeared. A series of analyses are made with the test results to derive the suitable parameter values when it is applied to the Ramamurthy (1985) failure criterion. The result of uniaxial compression test is analyzed by introducing the n-index into Ramamurthy failure criterion. The result shows that, n=l is suitable for ${\beta}=0^{\circ}{\sim}30^{\circ}$ and n=3 is suitable for ${\beta}=30^{\circ}{\sim}90^{\circ}$. To analyze the result of triaxial compression test by Ramamurthy failure criterion, anisotropy ratio in uniaxial compression test is added to Ramamurthy's equation and material constants are estimated by modified Ramamurthy's equation. When these values are applied back to Ramamurthy failure criterion, the predicted values are well fitted to the test results. And strength anisotropy for failure criteria of Jaeger (1960), McLamore & Gray (1967) and Hoek & Brown (1980) are also investigated.

Example of the Structural Design with Applied SNiP codes in the Commonwealth of Independent States (CIS) (CIS 국가 내진 설계 방법과 SNiP Code를 적용한 주거시설 구조설계 사례)

  • Lee, Dong-Woo;Kwak, Chul-Seung;Jeong, Hoon-Sik
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.232-237
    • /
    • 2008
  • In the Commonwealth of Independent States (CIS), the international organization, or alliance, consisting of eleven former Soviet Republics, their own regulation and standard, codes of the building are based on SNiP issued from the Russia. The SNiP for the seismicity is based on Kazakhstan codes where earthquake is very strong. After their independence, Seismic codes for Former Soviet Republics have been developed in their own accord. The building subjected by more than certain magnitude should be followed by TU as well as SNiP. In this paper, the residential complex project where seismic stability is considered from schematic design will be introduced. In this project, Local analysis program and method for arrangement of bar was applied. In the structural drawings, Korean and Local methods was compromised.

  • PDF

The Suggestion of Testing Method for Analysis of Tensile Strength of Multi-Directional GFRP Plate (다방향 GFRP 플레이트의 인장강도 분석을 위한 시험 방법 제안에 관한 연구)

  • Sim, Jong-Sung;Kwon, Hyuck-Woo;Lee, Hyoung-Ho;Kim, Hyun-Joong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.799-808
    • /
    • 2011
  • In this study, a standardized test method to analyze tensile properties of multi-directional GFRP plate was proposed. Presently, tensile strength test of FRP composite reinforced with isotropic and orthotropic fiber is standardized according to ISO standard. Also, even though many studies were performed on test method to analyze the dynamic properties, the properties of tensile strength for multi-directional GFRP plate were not clearly identified. Currently, the domestic test method in accordance with ASTM, which is applicable to unidirectional FRP plate, gave tensile test results greater than actual properties. Thus, in this study, GFRP tensile test was conducted using the method found to be commonly applicable to all standards based on literature review of domestic and international references. Then, anchorage length experiments were performed using the proposed tension test method to evaluate validity of the method. Finally, optimal anchorage length was estimated from the numerical analysis to propose the standardized tensile strength method for GFRP multi-directional composite evaluation.

Experimental Study on the Mix Design Method using the Fracture Energy and the other Parameters in Concrete. (콘크리트의 파괴에너지와 다른 재료특성을 이용한 배합설계법에 관한 실험연구)

  • 강성후
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.4
    • /
    • pp.149-160
    • /
    • 1992
  • 콘크리트 압축강도가 설계의 규준이 될 경우 배합비를 결정하는 방법은 여러 가지가 있으나, 파괴에너지 및 탄성계수와 같은 규준이 주어질 경우 배합비 결정에 적용하는 방법은 거의 없다. 이를 위하여 본 연구는 콘크리트 재료성질의 관계에 관한 배합설계도(Mix design diagram)를 제안하였다. 이 방법은 시멘트량, 물-시멘트 비가 콘크리트의 압축강도, 탄성계수, 할렬인장강도, 파괴에너지 그리고 콘크리트 특성길이(Characteristic length)에 주는 영향을 실험에 의하여 규명하였다. 시편제작을 위하여 각기 다른 물-시멘트비와 워커빌리티를 갖는 6종류의 무근콘크리트 배합이 사용되었다.