• Title/Summary/Keyword: 궤도선형

Search Result 157, Processing Time 0.039 seconds

Numerical Integration of Non-linear Equation of Motion using Operation of Integration (적분행렬을 이용한 비선형 운동방정식 수치적분)

  • Lee, Donghun;Kwon, Jae-Wook;Choi, Sujin;Rew, Dong-Young;Ju, Gwanghyeok
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.60-65
    • /
    • 2014
  • In this paper, numerical integration method using operational matrix of integration is studied. Using the operational matrix of integration, modified fixed point iteration method is introduced in order to solve rapidly an initial value problem for non-linear equation of motion. As an example, an initial value problem for orbital motion is considered. Through the numerical example, it is shown that the algorithm is efficient from the computational time point of view.

고해상도 위성카메라의 선형운동에 의한 영상번짐 해석

  • 장홍술
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.103-103
    • /
    • 2003
  • 공간해상도가 높고 영상 신호량의 증가를 위해 TDI(time delay and integration) 방식의 센서를 이용하는 저궤도 위성카메라의 경우 지구의 자전효과나 위성의 자세 불안정 등으로 인해 촬영된 영상의 퍼짐현상(smearing)이 나타난다. 본 연구에 따르면 선형운동에 의한 결과로 발생하는 영상퍼짐은 위성의 자세제어 특성 뿐 만 아니라 위성의 궤도 특성과 TDI 단계, 지상 촬영 지점의 위도 및 경사촬영 각도에 의해 결정되며 다목적 실용위성 2호(KOMPSAT2)의 탑재카메라를 실례로 살펴본 해상도 1m급의 태양동기궤도 위성의 경우 별도의 보정 과정이 없을 경우 영상의 퍼짐이 심각한 것으로 나타난다. 주된 원인은 지구의 자전효과이며 영상퍼짐의 정도는 위성 직하점의 위도에 따라 변하고 카메라의 경사촬영 각도와는 연관성이 작은 것으로 나타난다. 또한 촬영전에 자세제어를 이용해 카메라의 Yaw축 각도를 조정할 경우 영상퍼짐현상이 현저히 감소함을 보여준다.

  • PDF

The Experimental Study on the Effect of Track System on the Integral Behavior of Railway Bridge (궤도시스템이 철도교량의 정.동적거동에 미치는 영향에 관한 실험적 연구)

  • Sung, Deok-Yong;Park, Yong-Gul;Choi, Jung-Youl;Kim, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.186-193
    • /
    • 2010
  • Track system and periodic live load are characteristics of railway bridges. In the design and construction of railway bridge, periodic live load increases the importance of dynamic behavior. And It is well known that behavior of railway bridge may be affected by track system in real bridge. Through experimental study, static and dynamic behaviors were investigated. Deflection and stress due to bending moment were measured, the location of neutral axis of each section, natural frequency, damping ratio were analyzed for each three track systems - girder only, installed ballast track system and installed concrete slab track system. According to measured values for the each type of track system, concrete track system increases the stiffness of bridge by 50%, and ballast system does by 7%, dynamic responses of structure change linearly with the magnitude of load and location of neutral axis of each sections varies with each track system. Damping ratio is almost equal without and with track. Therefore, the effects of track system on the integral behaviors of railway bridge can not be ignored in the design of bridge, especially in the case of concrete slab track system. So study of the quantitative analysis method for effects of track system must be performed.

A Study on Multiple Spacecraft Formation-keeping Control (다위성체의 편대비행 형상유지 제어에 관한 연구)

  • No, Tae-Soo;Lee, Jae-Gyu;Jung, Ok-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.51-59
    • /
    • 2005
  • In this paper, results of a multiple spacecraft formation-keeping control using the orbital relative motion and optimization technique are presented. To analyze and predict the relative motion between the formation-flying satellites, a closed-form orbit propagator obtained using the method of ephemeris compression is used. This closed-form orbit propagator is combined with optimization technique to plan a series of impulsive maneuvers, which maintain the formation configuration within the specified limit. As an example, this method is applied to the problem of maintaining the projected circular formation geometry and results from nonlinear simulation are presented.

Analysis on Factors Affecting the Vibration of the Ballast Track in Kyeong-Bu High Speed Line (경부고속선 자갈궤도의 진동에 영향을 미치는 인자에 대한 분석)

  • Kim, Man-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.463-472
    • /
    • 2007
  • In this paper, the correlation between the vibration characteristics of the track components and the parameters affecting the vibration is analysed. To do it, the accelerations of each track component such as rails, sleepers and ballast are measured in Kyong-Bu high-speed line. The RMS values of the measured data are calculated and the pad stiffness, the longitudinal irregularity, running velocity and the corrugation, are considered as the parameters in the viewpoint of track. By using the linear regression, the correlation coefficient is calculated to analyse the relationship. Also, the 1/3 Octave analysis is calculated to analyse the dominant frequency band of tile vibrations of the track components.

A Bayesian Regression Model to Estimate the Deterioration Rate of Track Irregularities (궤도틀림 진전율 추정을 위한 베이지안 회귀분석 모형 연구)

  • Park, Bum Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.547-554
    • /
    • 2016
  • This study considered how to estimate the deterioration rate of the track quality index, which represents track geometric irregularity. Most existing studies have used a simple linear regression and regarded the slope of the regression equation as the progress rate. In this paper, we present a Bayesian approach to estimate the track irregularity progress. This Bayesian approach has many advantages, among which the biggest is that it can formally include the prior distribution of parameters which can be derived from historic data or from expert experiences; then, the rate can be expressed as a probability distribution. We investigated the possibility of applying the Bayesian method to the estimation of the deterioration rate by comparing our bayesian approach to the conventional linear regression approach.

Experimental Study on Characteristics of Deformation for Concrete Track on Railway Bridge Deck End induced by Bridge End Rotation (철도교량 단부 회전에 따른 콘크리트 궤도의 변형특성에 관한 실험적 연구)

  • Lim, Jongil;Song, Sunok;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.217-225
    • /
    • 2013
  • In this study, by considering the rail fastening support distance and the distance between the bridge and the abutment, the behavior of concrete track installed on a railway bridge end deck and the bridge end rotation were analyzed. In order to analyze the track-bridge interaction, bridge and abutment specimens with concrete track structures were designed and used in laboratory testing. At a constant fastening support distance, an increase in the bridge end rotation caused an increase in the displacement of the rail. Therefore, the displacement of the rail directly affects the rail and clip stress. Further, it is inferred that the results of multiple regression analysis obtained using measured data such as angle of bridge end rotation and fastening support distance can be used to predict the track-bridge interaction forces acting on concrete track installed on railway bridge deck ends.

A Study on Track Deformation Characteristics of Turnout System by Adjacent Excavation Work on Urban Transit (인접굴착공사에 따른 도시철도 분기기 궤도의 변형 특성에 관한 연구)

  • Kim, Hae-Sung;Choi, Jung-Youl;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.477-482
    • /
    • 2022
  • The structure of the turnout track is very complex, so it is a facility that is more difficult to maintain and requires detailed management than a general track type. The purpose of this study is to analyze the effect on the deformation of the turnout system of the ground section due to the excavation work adjacent to the serviced urban railways. In this study, based on finite element analysis for each stage of adjacent excavation, the track deformation for each major location of turnout system was analyzed in consideration of the layout of the turnout system installed on the ground section, and the safety and stability was confirmed by comparing it with the track irregularity regulation. As a result of the study, it was found that the major construction stage affecting the track deformation of the turnout system on the ground section was the final stage of excavation. In addition, although the vertical displacement which is a vertical irregularity occurred relatively large, it was analyzed that the horizontal deformation was dominant overall, because of the excavation site is located on the side of the turnout system. In addition, it was analyzed that the amount of displacement at each major location of the turnout system is different, and there is a possibility that there may be a twist irregularity due to the deviation of the track deformation for each location according to the distance from the excavation site. Therefore, it was analyzed that it is necessary to classify and manage the importance of the track deformation of the turnout system of actual operating line, including additional displacement due to adjacent excavation, based on the track irregularity that has occurred at each location where the major deformation characteristics occur.

Investigation on the Accuracy of bundle Adjustments and Exterior Orientation Parameter Estimation of Linear Pushbroom Sensor Models (선형 푸시브룸 센서모델의 번들조정 정확도 및 외부표정요소추정 정확도 분석)

  • Kim Tae Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.137-145
    • /
    • 2005
  • In this paper, we investigate the accuracy of various sensor models developed for linear pushbroom satellite images. We define the accuracy of a sensor model in two aspects: the accuracy of bundle adjustments and the accuracy of estimating exterior orientation parameters. The first accuracy has been analyzed and reported frequently whereas the second accuracy has somewhat been neglected. We argue that the second accuracy is as important as the first one. The second accuracy describes a model's ability to predict satellite orbit and attitude, which has many direct and indirect applications. Analysis was carried out on the traditional collinearity-based sensor models and orbit-based sensor models. Collinearity-based models were originally developed for aerial photos and modified for linear pushbroom-type satellite images. Orbit-based models have been used within satellite communities for satellite control and orbit determination. Models were tested with two Kompsat-1 EOC scenes and GPS-driven control points. Test results showed that orbit-based models produced better estimation of exterior orientation parameters while maintained comparable accuracy on bundle adjustments.