• Title/Summary/Keyword: 굳지않은 콘크리트

Search Result 61, Processing Time 0.027 seconds

The Fundamental Properties of Foamed Concrete as the Eco-friendly Ground Repair System for Cast in Site Using the CSA (CSA를 사용한 친환경 지반보수용 현장 기포콘크리트의 기초 특성 검토)

  • Woo, Yang-Yi;Park, Keun-Bae;Ma, Young;Song, Hun-Young
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • This study aimed to develop a foam concrete material for a ground repair system that has low strength and low fluidity by using an eco-friendly binder, which substitutes industrial by-products for more than 90% of cement. Basic properties were evaluated after substituting a small amount of calcium sulfo aluminate (CSA) for the binder to improve the sinking depth rate and volume change, commonly found when it had a large amount of industrial by-products. The substitution rates of CSA for the eco-friendly binder used for the foam concrete were 2.5, 5, and 10%. Fresh properties, hardened properties, pore structure, and hydrates were analyzed. Experimental results showed that using only 2.5% of CSA could improve the deep sinking depth which occurred when using an eco-friendly binder. As a result, the weight difference between the upper, middle, and lower parts of cast specimens was improved even after being hardened. The addition of CSA also contributed to the formation of small, uniformly sized closed pores and improved initial strength. However, when the proportion of CSA increased, the long-term strength decreased. However, it satisfied the target strength when 5% or less of CSA was used. The results of this study revealed that it was possible to manufacture foam concrete with low strength and high fluidity for repairing ground satisfying target qualities by adding 2.5% of CSA to the eco-friendly binder containing a large amount of industrial by-products.

The Effect of Entrained Air Contents on the Properties of Freeze-thaw Deterioration and Chloride Migration in Marine Concrete (연행 공기량이 해양콘크리트의 동결융해 및 염화물 확산특성에 미치는 영향)

  • Park, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.161-168
    • /
    • 2008
  • The freeze-thaw deterioration and chloride attack, which are the typical degradation factors for durability of marine concrete, are significantly affected by pore structures in terms of penetration and diffusion. These pore structures of concrete are closely related to the types and amount of AE agent, used to guarantee the resistance of freeze-thaw deterioration, and the elapsed time before concrete pouring. This paper evaluates the durability of concrete based on the results of tests on cylinder specimens and core specimens from mock-up members with different air content of 4~6% and 8~10%, respectively. According to the test results, the air content of hardened concrete is 2.5~5.2% at 7 days and 2.4~5.1% at 28 days. These air contents are about half of the initial values just after the concrete mixing. Judging from the amount of scale after the freeze-thaw test completed, air content of 8~10% is slightly more beneficial against the deterioration of concrete than air content of 4~6%. Meanwhile, the core specimens from mock-up members exhibit somewhat unfavorable freeze-thaw deterioration and chloride migration characteristic compared with the cylinder specimens tested in the laboratory under the same mixing condition, as to show 106% in freeze-thaw test and 160% in chloride diffusion coefficient test, respectively.

An Experimental Study on the Engineering Properties and Durability of Concrete According to the Fineness and Replacement Ratio of Blast-Furnace Slag (고로슬래그미분말의 분말도 및 대체율에 따른 콘크리트의 공학적 특성 및 내구특성에 관한 실험적 연구)

  • Kim, Moo-Han;Kim, Jae-Hwan;Cho, Bong-Suk;Na, Chul-Sung;Kim, Young-Duck
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.1 s.15
    • /
    • pp.81-88
    • /
    • 2005
  • As a part of efforts for conformity of demand to high quality of concrete and for solution of economic problem, blast-furnace slag has been utilized by means of cement replacement. With utilization of blast-furnace slag, superior performance can be ensured, environmental pollution can be prevented and economical advantage can be obtained. But blast-furnace slag has a lot of disadvantages like retardation of strength manifestation etc. in field construction, so properties examination of concrete using blast-furnace slag instead of cement is necessary. For upper necessity, it is planed that basic data for utilization and performance management of blast-furnace slag by means of cement replacement is presented with experimental comparison and investigation of engineering properties of concrete according to the replacement ratio and fineness of blast-furnace slag.

Properties of Permeable Formwork using Permeable Liner (투수시트를 활용한 투수거푸집의 특성)

  • Lee, Jong Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.419-426
    • /
    • 2012
  • Fresh concrete has 10~20% extra water in it. As those water remain entrapped air in the concrete, life span of structures is reduced. For that reason, if extra water is eliminated, it will be useful to improve the durability of the structures. Though there were many reports about permeable formwork, the study on the properties of permeable liner itself has been insufficient. In addition, making holes on the form causes lowering of workability. Therefore, this study reviewed the properties of woven and non-woven permeable liner and formwork which has no holes on the form. For the woven and non-woven permeable liner, they showed great application with W/C decrease, lowering roughness, increased compressive strength of surface area and slight loss of cement paste, when the were applied to concrete. In addition, they showed different performance according to the density of woven liner or thickness of non-woven liner. Furthermore, when using the draining non-woven permeable liner which has drainage path inside, concrete surface showed required performance with high workability, without drilling the holes on the form.

Spatting and Fire Enduring Properties of High Strength RC Column Subjected to Axial Load Depending on Fiber Contents (중심 축하중을 받는 고강도 RC기둥의 섬유 혼입량에 따른 폭열 및 내화 성상)

  • Han, Cheon-Goo;Hwang, Yin-Seong;Lee, Jae-Sam;Kim, Kyoung-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.83-90
    • /
    • 2006
  • This paper investigates experimentally the fire resistance performance and spatting resistance of high performance reinforced concrete column member subjected to fire containing polypropylene fiber(PP fiber) and cellulose fiber(CL fiber). An increase in PP fiber and CL fiber contents, respectively resulted in a reduction of fluidity due to fiber ball effect. Air content is constant with m increase in fiber content. Compressive strength reached beyond 50 MPa. Based on fire resistance test, severe failure occurred with control concrete specimen, which caused exposure of reinforcing bar. No spall occurred with specimen containing PP fiber. This is due to the discharge of internal vapour pressure. Use of CL fiber superior to control concrete in the side of spatting resistance, localized failure at comer of specimen was observed. Corner of specimen had deeper neutralization than surface of specimen. Specimen containing PP fiber had the least damaged area due to spatting. Neutralization depth ranged between 6 and 8 mm Residual compressive strength of specimen containing PP fiber maintained 40%, which is larger than control concrete with 20% of residual strength. Specimen containing CL fiber had 25% or residual strength.

Effect of Replacement of 5~13mm Recycled Coarse Aggregates on Field Applicability of the Concrete through Mock-up Test (목업 시험을 통한 5~13mm 순환 굵은골재 치환 사용이 콘크리트의 현장적용성에 미치는 영향 고찰)

  • Han, Min-Cheol;Song, Young-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.59-67
    • /
    • 2017
  • The objective of this paper is to investigate experimentally the effect of replacement of recycled coarse aggregates with 5~13mm in size on a field applicability of concretes through Mock-up test. Seven different mock-up specimens were prepared with the size of $1200{\times}800{\times}800mm$ simulating column and wall. For the concrete mixtures, 24MPa, 27MPa and 40MPa of nominal strength were adopted with 30% and 70%(only for 24MPa) of 5~13mm recycled coarse aggregate (RCA) replacement and without 5~13mm RCA(Plain). For test items, slump, slump flow, compressive strength with different curing conditions, core drilling, rebound numbers and drying shrinkage were measured. Test results indicated that 30% of 5~13 mm RCA replacement resulted in increase in slump, slump flow and resistance against segregation, while air contents decreased compared to those of plain mixture. Compressive strength of concrete with 30% of 5~13mm RCA was shown to be higher than that of plain mixture due to optimum packing effect associated with presence of well graded aggregates. Rebound number of the mock-up specimen with 30% of 5~13mm RCA had lower fluctuation according to hitting location than that of plain mock-up specimen. It is believed from the results of the study that replacement of 30% of 5~13mm RCA brings desirable improvement in various aspect of concrete performance due to associated dense packing effect.

An Experimental Study on the Influence of High Quality Fly ash and Water-Binder Ratio on Properties of the Ternary System Concrete (3성분계 콘크리트의 특성에 미치는 고품질 플라이애쉬의 치환율 및 물-결합재비 영향에 관한 실험적 연구)

  • Lee, Seung-Min;Kim, Dong-Sool;Rho, Hyoung-Nam;Jung, Yong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.877-880
    • /
    • 2008
  • Recently the press and institute recognized fly ash as it had excellent performance. Its research and applications are on the rise largely as a substitute for cement. On the contrary, it is in a situation that the regulation of high quality fly ash remains at a low level. Accordingly, this study was to establish 8000 class of fineness of fly ash and three levels of substitute like 15%, 3 0%, and 45% in order to analyze the replacement ratio and effect of water-binder ratio for fly ash that affected the properties of ternary system concrete. As a result of experiment by planning water-binder ratio for two levels like 40% and 50%, it increased the fluidity in a fresh state, and it decreased the air content. This study has found out the setting acceleration and reduction of heat of hydration. As for the strength property in a set state, this study has shown the tendency of being equal or higher in age 28 days.

  • PDF

Fire Resistant Properties of the RC Columns Applying Various Splling Prevention Methods (폭렬방지공법 변화에 따른 RC 기둥부재의 내화특성)

  • Han, Cheon-Goo;Pei, Chang-Chun;Lee, Jong-Suk;Lee, Chan-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.119-126
    • /
    • 2009
  • This study investigated the fire resistance of RC columns applying Fiber addition method, Fire board attaching method, and Fire proof sparying method. The results were summarized as following. The test showed that increase of fiber content, as expected, decreased the fluidity of fresh concrete, but for the types of fiber, the specimens containing nylon(NY) was favorable. The incline of fiber content also affected on the air content of concrete, which the specimens adding polypropylene(PP) fiber was the lowest, followed by a less decrease in polyvinyl alchhol(PVA) and then NY respectively. For the compressive strength at 28days, it was over 50MPa and showed slight increasing tendency by rising fiber contents. After the fire test completed, control concrete exhibited the severe demage, while the specimens containing more than 0.05vol.% of PP and NY was able to protect from spalling. In the case of splay, the partly spalling occurred at the all finishing material, however the RC columns were protected from spalling. For the methods attached with boards, all RC columns were protected except the dry attaching method. The reduced weight ratio was favorable because it was below 8 % except for plain concrete.

Temperature Dependency Affecting the Properties at Early Age of the Concrete Containing High Volume Blast Furnace Slag (고로슬래그 미분말을 다량 치환한 콘크리트의 초기품질에 미치는 온도의존성)

  • Han, Cheon-Goo;Lee, Jang-Hwa;Koh, Kyung-Taek;Han, Min-Cheol;Lee, Ju-Sun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.74-80
    • /
    • 2009
  • This study analysis the fundamental properties of temperature-dependence corresponding the change of curing temperature classified by the replacement ratio of BS, and the results are summarized as following. As the properties of flow, plain satisfied with the target slump, and as the replacement ratio of BS increased, the flow increased, but the air content slightly decreased. The time of set delayed as the replacement ratio of BS increased, but the curing temperature $35^{\circ}C$, even with 80% BS replaced concrete, the time of set was faster than $5^{\circ}C$, $20^{\circ}C$ plain, so the temperature-dependence was much greater. The compressive strength was decreased as the replacement ratio of BS increased, especially as the curing temperature lower, the compressive strength was lower comparatively. Also as the age increased, the plain developed more strength, therefore it show the temperature-dependence is much larger.

  • PDF

Development of High Performance Curing Agent and Effective Dispersion Method of Nanomaterials (고성능 피막양생제 개발 및 나노물질의 분산방안 평가)

  • Son, Ho-Jung;Yoo, Byung-Hyun;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.230-236
    • /
    • 2019
  • Recently, issues related to the quality of concrete have continuously resulted in surface quality problems, such as the exfoliation of concrete surfaces due to the cost reduction of cement and poor quality fine aggregate, scaling of surfaces caused by laitance, and plastic shrinkage cracks. Prompted by social issues, the application of a photo catalyst to road structures is being attempted to solve the environmental problems caused by fine dust and automobile exhaust. In this study, chemical admixtures were developed to improve the surface quality of concrete and to apply and distribute titanium dioxide in nanoscale sizes to provide basic data for the development of a photocatalyst-curing agent. As a result of the experiment, silicon and silane were reviewed as a raw material as a curing agent to develop a high performance curing agent with better film performance than conventional curing agents because they could form a film quickly on a fresh concrete surface. The distributed stability of the ultrasonic disperser showed the best performance through an outdoor test for four weeks to review the dispersion measures for the application of nanomaterials.