• 제목/요약/키워드: 군집 자료

검색결과 1,192건 처리시간 0.023초

마이크로어레이 유전자 발현 자료에 대한 군집 방법 비교 (Comparison of clustering methods of microarray gene expression data)

  • 임진수;임동훈
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권1호
    • /
    • pp.39-51
    • /
    • 2012
  • 군집분석은 마이크로어레이 발현자료에서 유전자 혹은 표본들의 유사한 특성을 갖는 연관구조를 조사하는데 중요한 도구이다. 본 논문에서는 마이크로어레이 자료에서 계층적 군집방법, K-평균법, PAM (partitioning around medoids), SOM (self-organizing maps) 그리고 모형기반 군집방법 들의 성능을 3가지 군집 타당성 측도인 내적 측도, 안정적 측도 그리고 생물학적 측도를 가지고 비교분석하고자 한다. 모의실험을 통해 생성된 자료와 실제 SRBCT (small round blue cell tumor) 자료를 가지고 여러 가지 군집방법들의 성능을 비교하였으며 그 결과 모의실험 자료에서는 거의 모든 방법들이 3가지 군집측도에서 원래 자료와 일치하는 좋은 군집 결과를 나타내었고 SRBCT 자료에서는 모의실험 자료처럼 명확한 군집화 결과를 보여주지는 않으나 내적측도의 실루엣 너비 (Silhouette width) 관점에서는 PAM 방법, SOM, 모형기반 군집방법 그리고 생물학적 측도에서는 PAM 방법과 모형기반 군집방법이 모의실험 결과와 비슷한 결과를 얻었고 안정적 측도에서 모형기반 군집방법이 다른 방법들보다 좋은 군집결과를 보여주었다.

다목적 유전자 알고리즘을 이용한 강우자료의 군집해석 (Cluster Analysis of Precipitation Data Using Multi-Objective Genetic Algorithms)

  • 김태순;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.558-561
    • /
    • 2005
  • 강우자료의 빈도해석을 위해서 널리 사용되고 있는 지점빈도해석기법은, 우리나라와 같이 구축된 강우자료의 자료년수가 충분하지 못한 경우에 신뢰도가 떨어지는 결과를 가져올 수 있다. 이런 단점을 극복하기 위해서, 최근에는 수문학적인 성질이 서로 비슷한 지점을 하나의 지역으로 설정해서 빈도해석을 실시하는, 지역빈도해석기법이 널리 사용되고 있다. 본 논문에서는 지역빈도해석에 사용되는 군집해석(cluster analysis)에 관한 연구로서, 다목적 유전자알고리즘을 이용해서 군의 개수와 군집도간의 상호관계를 밝혀내고 이를 지역빈도해석에 적용해서 군집해석의 효율성 및 적용성을 높이고자 한 연구이다.

  • PDF

K-모드 알고리즘과 ROCK 알고리즘의 비교 및 개선방안

  • 김보화;김규성
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2001년도 추계학술발표회 논문집
    • /
    • pp.163-167
    • /
    • 2001
  • 데이터 마이닝에서 분석의 대상으로 하는 대용량 자료에는 연속형 자료와 범주형 자료가 모두 포함된다. 전통적인 군집분석은 연속형 자료를 대상으로 하는 방법들이다. 본 연구에서는 범주형 자료를 대상으로 하는 군집분석방법인 K-모드 알고리즘과 락(ROCK) 알고리즘을 비교${\cdot}$분석하였다. 그리고 두 알고리즘이 갖는 방법론적인 단점을 보안하여 군집의 효과를 높일 수 있는 개선 방안을 제안하였다.

  • PDF

시간 경로 마이크로어레이 자료의 군집 분석에 관한 고찰 (A Review of Cluster Analysis for Time Course Microarray Data)

  • 손인석;이재원;김서영
    • 응용통계연구
    • /
    • 제19권1호
    • /
    • pp.13-32
    • /
    • 2006
  • 생물학자들은 시간에 따라 발현 수준이 변화하는 유전자의 군집화를 시도하고 있다. 지금까지는 마이크로어레이 자료의 군집분석에 관한 연구의 경우 군집 방법 자체를 비교하는 연구가 주를 이루었다. 그러나 군집화 이전에 의미있는 변화를 보이는 유전자 선택에 따라 군집화 결과가 달라지기 때문에, 군집 분석에 있어서 유전자 선택 단계도 중요하게 고려되어야 한다. 따라서, 본 논문에서는 시간 경로 마이크로어레이 자료를 군집 분석하는데 있어서 유전자 선택, 군집 방법 선택, 군집평가 방법 선택 등 3가지 요인을 고려한 폭 넓은 비교 연구를 하였다.

기온과 강수량의 수치모델 격자자료를 이용한 기상관측지점의 월별 군집화 (Cluster analysis by month for meteorological stations using a gridded data of numerical model with temperatures and precipitation)

  • 김희경;김광섭;이재원;이영섭
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권5호
    • /
    • pp.1133-1144
    • /
    • 2017
  • 기상자료를 이용한 군집분석은 기상 특성에 근거한 기상 지역의 세분화를 가능하게 하고 군집을 이루는 지형별 기상 특성의 파악을 용이하게 한다. 이때 기상관측자료를 이용한 군집분석은 관측지점의 밀도가 다르기 때문에 우리나라의 기상특성이 고르게 반영되지 못할 수 있다. 반면 수치모델 격자자료는 $5km{\times}5km$ 간격으로 조밀하고 고른 자료의 생산이 가능하므로 우리나라의 기상 특성을 고르게 반영할 수 있다. 본 연구에서는 기온과 강수량의 수치모델 격자자료를 이용하여 군집분석을 수행하고, 그 결과를 바탕으로 기상관측지점에 대한 군집을 결정하였다. 기상 특성이 월별로 상이할 수 있기 때문에 군집분석은 월별로 수행하였으며, K-Means 군집분석 방법의 단점을 보완하고자 계층적 군집분석 방법인 Ward 방법과 결합하여 적용하였다. 그 결과 우리나라 기상관측지점들에 대해 시 공간적으로 세분화된 군집화가 이루어졌다.

고차원 (유전자 발현) 자료에 대한 군집 타당성분석 기법의 성능 비교 (Comparison of the Cluster Validation Methods for High-dimensional (Gene Expression) Data)

  • 정윤경;백장선
    • 응용통계연구
    • /
    • 제20권1호
    • /
    • pp.167-181
    • /
    • 2007
  • 유전자 발현 자료(gene expression data)는 전형적인 고차원 자료이며, 이를 분석하기 위한 여러 가지 군집 알고리즘(clustering algorithm)과 군집 결과들을 검증하는 군집타당성분석 기법(cluster validation technique)이 제안되고 있지만, 이들 군집 타당성을 분석하는 기법의 성능에 대한 비교, 평가는 매우 드물다. 본 논문에서는 저차원의 모의실험 자료와 실제 유전자 발현 자료에 대하여 군집 타당성분석 기법들의 성능을 비교하였으며, 그 결과 내적 측도에서는 Dunn 지수, Silhouette 지수 순으로 뛰어났고 외적 측도에서는 Jaccard 지수가 성능이 가장 우수한 것으로 평가되었다.

상대적 계층적 군집 방법을 이용한 마이크로어레이 자료의 군집분석 (Microarray data analysis using relative hierarchical clustering)

  • 우숙영;이재원;전명식
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권5호
    • /
    • pp.999-1009
    • /
    • 2014
  • 계층적 군집 분석은 분석 결과를 덴드로그램으로 쉽게 표시할 수 있어서 방대한 양의 마이크로어레이 자료를 탐색하기에 유용하며, 군집된 결과를 이용하여 생물학적 현상을 이해하는데 도움을 준다. 하지만, 계층적 군집방법은 두 군집간의 절대값 거리만을 고려하여 병합하기 때문에 군집 간의 상대적 비유사성은 설명하지 못하는 단점이 있다. 본 연구에서는 상대적 계층적 군집 방법을 소개하고, 마이크로어레이 자료와 같이 다양한 군집의 모양을 가진 모의실험 자료들과 실제 마이크로어레이 자료를 사용하여 상대적 계층적 군집방법과 기존의 계층적 군집 방법을 비교하였다. 두 계층적 군집 방법의 질적 평가는 오분류율, 동질성, 이질성 지표를 이용하여 수행하였다.

K-평균 군집화의 재현성 평가 및 응용 (Reproducibility Assessment of K-Means Clustering and Applications)

  • 허명회;이용구
    • 응용통계연구
    • /
    • 제17권1호
    • /
    • pp.135-144
    • /
    • 2004
  • K-평균 군집화(K-means clustering)는 고객 세분화(customer segmentation) 등 데이터 마이닝에서 중요한 한 몫을 하는 비지도 학습방법 (unsupervised learning method)이다. K-평균 군집화가 재현성(reproducibility)이 있는가를 보기 위하여, 다수의 기존 연구에서는 관측 자료를 2개 셋으로 나눈 자료 분할(data partitioning) 방법이 활용되고 있다. 본 교신에서 우리는 이보다 개념적으로 명확한 새로운 자료 분할 방법을 제안한다. 이 방법은 관측 자료를 3개 셋으로 나누어 그 중 2개 자료 셋을 독립적인 군집화 규칙을 생성하는 데 사용하고 나머지 1개의 자료 셋을 규칙간 일치성을 테스트하는데 사용한다. 또한 2개의 군집화 규칙간 일치성 평가를 위한 지표로서 엔트로피 기준의 환용 방법을 제시한다.

선형 점자료에 있어서의 시.공 복합 군집의 탐색 (Detecting Space-Time Clusters in Linear Point Data)

  • 홍상기
    • 대한지리학회지
    • /
    • 제33권2호
    • /
    • pp.325-338
    • /
    • 1998
  • 본 연구에서는 시.공 복합적인 선형 점 자료를 대상으로 시간과 공간을 함께 고려했을 때 자료 내에 군집(cluster)-시.공 복합 군집(space-time cluster)-이 존재하는 가를 검증하는 방법에 대해 논의하고, 실제 교통사고지점의 분포자료를 분석하여 군집의 유무를 통계적으로 검증하였다. 통계 분석의 결과 다음과 같은 사실이 확인되었다. 첫째, Knox의 분할표 방법과 Mantel의 역수 변환을 이용한 일반화된 회귀분석방법 모두 임계 거리 및 임계 시간 간격의 선택이 분석결과에 영향을 미친다. 둘째, 이러한 임의성을 극복하기 위해 다양한 임계 거리 및 임계 시간 간격(혹은 부가 상수)에 대해 반복 실험한 결과, 일부 임계값의 조합에서 시간과 공간이 서로 독립적이라는 귀무가설을 기각할 수 있는 증거가 발견되었다. 셋째, 시.공 복합 군집의 파악에 가장 적합한 임계 거리와 임계 시간 간격은 공간적으로는 7000m, 시간적으로는 14일 혹은 21일이다. 마지막으로, 통계 분석과정에서 자료에 존재하는 중복 기록 사고들의 존재가 밝혀짐으로써 시.공 복합군집 검증이 탐험적 자료 분석(exploratory data analysis)의 도구로서 가지는 가치를 확인할 수 있었다.

  • PDF

Time Control Microarray 자료의 군집 분석에 관한 고찰

  • 손인석;이재원
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.299-304
    • /
    • 2003
  • 생물학자들은 시간 패턴에 따라 발현 수준이 변화하는 유전자의 군집화를 시도하고 있다. 지금까지는 군집 방법의 비교 연구가 주로 진행되어 왔으나, 군집화 이전의 유전선택 방법에 따라 군집화 결과가 달라지기 때문에 유전자 선택 단계도 같이 고려되어야 한다. 따라서 본 연구에서는 Time Control Microarray 자료를 가지고 군집 분석을 하는데 있어서 유전자 선택, 군집분석 방법의 선택, Validation 방법의 선택 등 3가지 요인별로 보다 폭 넓은 비교 연구를 하였다.

  • PDF