In this paper, we propose health risk management using feature extraction and cluster analysis considering time flow. The proposed method proceeds in three steps. The first is the pre-processing and feature extraction step. It collects user's lifelog using a wearable device, removes incomplete data, errors, noise, and contradictory data, and processes missing values. Then, for feature extraction, important variables are selected through principal component analysis, and data similar to the relationship between the data are classified through correlation coefficient and covariance. In order to analyze the features extracted from the lifelog, dynamic clustering is performed through the K-means algorithm in consideration of the passage of time. The new data is clustered through the similarity distance measurement method based on the increment of the sum of squared errors. Next is to extract information about the cluster by considering the passage of time. Therefore, using the health decision-making system through feature clusters, risks able to managed through factors such as physical characteristics, lifestyle habits, disease status, health care event occurrence risk, and predictability. The performance evaluation compares the proposed method using Precision, Recall, and F-measure with the fuzzy and kernel-based clustering. As a result of the evaluation, the proposed method is excellently evaluated. Therefore, through the proposed method, it is possible to accurately predict and appropriately manage the user's potential health risk by using the similarity with the patient.
Journal of the Korean Data and Information Science Society
/
v.22
no.4
/
pp.671-678
/
2011
Data mining searches for interesting relationships among items in a given database. The methods of data mining are decision tree, association rules, clustering, neural network and so on. The decision tree approach is most useful in classification problems and to divide the search space into rectangular regions. Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, customer classification, etc. When create decision tree model, complicated model by standard of model creation and number of input variable is produced. Specially, there is difficulty in model creation and analysis in case of there are a lot of numbers of input variable. In this study, we study on decision tree using intervening variable. We apply to actuality data to suggest method that remove unnecessary input variable for created model and search the efficiency.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.6
/
pp.1203-1208
/
2016
For young children who are not spontaneous or not accurate in verbal communication of their emotions and experiences, drawing is a good means of expressing their status in mind and thus drawing analysis with chromatics is a traditional tool for art therapy. Recently, children enjoy digital drawing via painting tools thus there is a growing needs to develop an automatic digital drawing analysis tool based on chromatics and art therapy theory. In this paper, we propose such an analyzing tool based on dominant color analysis. Technically, we use ART2 clustering and fuzzy logic to understand the fuzziness of subjects' status of mind expressed in their digital drawings. The frequency of color usage is fuzzified with respect to the membership functions. After applying fuzzy logic to this fuzzified central vector, we determine the dominant color and supporting colors from the digital drawings and children's status of mind is then analyzed according to the color-personality relationships based on Alschuler and Hattwick's historical researches.
This study suggests the prediction model to estimate the specific energy of a pick cutter using a gene expression programming (GEP) and particle swarm optimization (PSO). Estimating the performance of mechanical excavators is of crucial importance in early design stage of tunnelling projects, and the specific energy (SE) based approach serves as a standard performance prediction procedure that is applicable to all excavation machines. The purpose of this research, is to investigate the relationship between UCS and BTS, penetration depth, cut spacing, and SE. A total of 46 full-scale linear cutting test results using pick cutters and different values of depth of cut and cut spacing on various rock types was collected from the previous study for the analysis. The Mean Squared Error (MSE) associated with the conventional Multiple Linear Regression (MLR) method is more than two times larger than the MSE generated by GEP-PSO algorithm. The $R^2$ value associated with the GEP-PSO algorithm, is about 0.13 higher than the $R^2$ associated with MLR.
본 논문에서는 재정가격결정모형(裁定價格決定模型)(Arbitrage Pricing Model)을 기초로 우리나라 주식시장에 영향을 주는 거시경제변수가 무엇인가를 찾고자 하였다. 방법론면에서는 과거변수(過去變數)(lagged variables)에 의해서만 기대치를 형성시키는 AIRMA(Autoregressike Integrated with Moving Average) 방법을 이용하기보다는 마코프속성(屬性)(Markov Property)을 갖는 상태공간모형(狀態空間模型) (State Space Model)을 이용하여 보다 합리적인 거시경제 요인의 이노베이션을 하였다. 또한 단순한 요인분석(要因分析)(factor analysis)에 의한 요인추출은 요인의 표본의존성(標本依存性)(Sample dependency)이 심하므로 그룹간 요인분석(inter-battery factor analysis)을 행하여 추정(推定)된 요인(要因)(요인값 : factor score)과 요인수를 결정하여 관련 거시경제변수를 선택한다. 그룹간 요인분석을 위한 그룹을 형성할 때 그룹내에서는 동질성을 그룹간에는 이질성을 최대한 살리는 것이 필요한데, 이를 위해 군집분석(群集分析)(Cluster Analysis)을 사용한 것이 특징이다. 결론적으로 우리나라 주식시장에 영향을 미치는 거시경제요인(巨視經濟要因)으로 단위노동비율, 제조업제품재고지수, 채권프리미엄, 수출물가지수, 정부부문 통화공급, 회사채수익률, 종합주가지수 등 7가지가 있는 것으로 분석되고 있다.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.329-331
/
2021
본 연구에서는 코로나19 관련 연구논문의 연구주제를 탐색하고 동향을 검토하고 있다. 또한 감성분석을 통해 부정적인 어조가 강한 경고가 되는 주제들을 알아본다. 잠재 디리슐레 할당(LDA)를 이용하여 총 8개의 토픽을 발견하 였고, 이를 구조적 토픽 모델링(STM)과 비교하여 비교적 안정적인 결과임을 확인하였다. 또한 k-means 군집 알고리즘을 통해 각 토픽별로 세부 연구주제를 발견하였고 주성분 분석을 이용하여 이를 시각적으로 표현하였다. 감성분석을 통해 각 토픽별 긍정적, 부정적인 단어들을 살펴보고 감성점수를 계산하여 연구논문의 주된 어조를 파악하였는데, 특히 생물 의학 관련, 국제적 역학관계, 심리적 영향과 관련된 연구에서 부정적인 어조가 강한 것으로 나타나 해당 부문에 대해서 주의와 관심이 요구된다. 향후 연구자들이 연구의 방향성을 탐색하고 정책결정자들이 연구지원 사업을 결정하는데 기초자료로 활용될 수 있을 것이다.
Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.1105-1108
/
2021
국내외 IOT 시장의 성장률은 꾸준히 증가할 것으로 예측된다. 특히 스마트 가전 시장 분야의 경우 다른 스마트 홈 분야보다 규모뿐만 아니라 성장률 역시 높은 편에 속한다. 한편 코로나 시대 도래로 인하여 개인의 가정에 머무르는 시간은 많아졌으며 개인의 살균에 대한 관심 역시 높아지게 되었다. 본 논문은 인공지능 자동 살균기를 설계하여 하나의 스마트 가전제품 서비스를 설계하는 솔루션을 제공하고자 한다. 인공지능 이미지 인식 기술을 통해 사용자 활동 패턴을 파악하고 이를 기반으로 살균 시간 도출 및 살균 시간 추천 알고리즘을 통해 사용자 맞춤형 살균 서비스를 제공하며 사용자의 활동 패턴에 맞춤화된 적절한 살균 강도를 결정할 수 있도록 군집화를 통해 살균 강도 결정 서비스도 제공한다.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.87-89
/
2000
정보기술의 발전은 기업들로 하여금 많은 양의 데이터를 기업내부에 축적할 수 있도록 하였지만, 축적된 데이터로부터 기업의 경쟁력을 강화시킬 수 있는 정보를 얻을 수 있는가의 여부는 별개의 문제이다. 즉, 최근 기업들은 최선의 의사결정을 내리는데 필요한 정보 또는 지식을 축적된 데이터로부터 가공해 낼 수 있는가의 여부에 중요한 관심사를 가지고 있다. 데이터마이닝은 바로 이와 같은 요구사항을 충족시키는 새로운 정보기술의 활용방법이다. 본 논문에서는 사용자가 쉽게 데이터마이닝을 접할 수 있게 하기 위해서 데이터마이닝 솔루션인 EasyMiner를 설계하였다. EasyMiner는 데이터베이스에 독립적으로 접근하여, 제공되는 마이닝 기법을 수행할 수 있다. 제공되는 마이닝 기법으로는 분류, 군집화, 연관규칙 그리고 기초통계를 지원하고 있으며 또한 기법들에 의해 생성된 지식들을 사용자에게 쉽게 이해시키기 위해 각 기법의 결과에 대한 가시화를 설계하였다. 본 논문에서는 데이터마이닝 솔루션인 EasyMiner 설계 및 구현에 관하여 제시한다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.15
no.2
/
pp.145-150
/
2015
Needs about safety of residents are important in urbanized society, elderly and small-size family. People are looking for safety information system and device of CPTED. That is, Needs and Installations of CCTV increased steadily. But, scientific analysis about validity, systematic plan and location of security CCTV is nonexistent. It is simply put these devised in more demanded areas. It has limits to look for safety of residents by increasing density of CCTVs. One of the characteristics of crime is clustering and stong interconnectivity. So, exploratory spatial data of crime is geo-coded using 2 years data and carried out cluster analysis and space statistical analysis through GIS space analysis by dividing 18 variables into social economy, urban space, crime prevention facility and crime occurrence index. The result of analysis shows cluster of 5 major crimes, theft, violence and sexual violence by Nearest Neighbor distance analysis and Ripley's K function. It also shows strong crime interconnectivity through criminal correlation analysis. In case of finding criminal cluster, you can find criminal hotspot. So, in this study I found concept of hotspot and considered technique about selection of hotspot. And then, selected hotspot about 5 major crimes, theft, violence and sexual violence through Nearest Neighbor Hierarchical Spatial Clustering.
전라북도 장안산의 72군락 지점에서 식물사회학적 조사에 의하여 구분된 10개 군락. 즉 신갈나무 군락, 신갈나무-철쭉꽃 군락, 신갈나무-노린재나무 군락, 신갈나무-졸참나무 군락, 졸참나무 군락, 굴참나무 군락, 서어나무 군락, 물푸레나무 군락, 층층나무 군락, 들메나무 군락에서 풍부도지수, 이질성지수, 균등도지수, 우점도지수를 산출하여 고도, 토양 특성 및 우점종군에 따른 종다양성의 변활르 분석하였으며 종서열-중요치 곡선을 이용하여 각 식물의 우점서열을 결정하고 각 종이 식물군락 내의 자원을 어떻게 분배하고 있는가를 결정하였다 고도, 토양요인(pH, base) 및 우점종의 차이는 삼림의 종 다양성에 영향을 미치는 중요한 변수로서 작용하였으며 우점종군에 따른 다양성의 변화는 지형과 교란에 의하여 영향을 받았다 종서열-중요치 곡선에서 조사된 10개 군락은 대수정규분포에 접근하고 있어서 군락간 약간의 차이는 있지만 대체적으로 어떤 특정 종이 군집 내 자원 공간을 독점하지 않고 적절히 분배하여 사용하고 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.