• 제목/요약/키워드: 군집 수 결정

검색결과 365건 처리시간 0.025초

클러스터링과 GA를 이용한 퍼지 제어기 설계 자동화 (Automatic Design of Fuzzy Controller Using Clustering and Genetic Algorithm)

  • 윤용석;공성곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2953-2955
    • /
    • 2000
  • 본 논문에서는 전문가의 지식이 없는 상황에서 자동적으로 최적의 퍼지 제어기를 설계하는 방법에 대해 연구한다. 먼저 퍼지 제어기의 규칙 설정을 위해 기존의 PID 제어기의 입출력 데이터를 클러스터링한다. 군집된 데이터들로부터 클러스터의 수를 파악하고 이를 바탕으로 퍼지 제어를 위한 규칙의 수를 결정한다. 둘째로 퍼지 제어기의 여러 파라미터들은 유전자 알고리즘을 적용하여 최적화한다. GA를 이용한 최적화 과정에서는 성능평가 기준으로 기준입력에 대한 시스템 응답간의 오차와 오버슈트의 크기를 사용하여 응답이 빠르고 안정적인 제어기를 설계하도록 진화방향을 설정한다. 이렇게 만들어진 퍼지 제어기의 성능을 기존의 PID 제어기와 비교 평가한다

  • PDF

적응형 정점 군집화를 이용한 메쉬 분할 (A Mesh Partitioning Using Adaptive Vertex Clustering)

  • 김대영;김종원;이혜영
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제15권3호
    • /
    • pp.19-26
    • /
    • 2009
  • 본 논문에서는 분할 축과 평면의 위치를 동적으로 결정하는 적응형 KD 트리 구조를 이용한 정점 군집화(Adaptive Vertex Clustering) 알고리즘과 이를 이용한 새로운 메쉬 분할 방법을 소개하고자 한다. 정점 군집화는 주로 한 개의 거대한 3차원 메쉬를 여러 개의 파티션(Partition)으로 분할하여 효율적으로 처리하고자 할 때 사용되는 기법으로, 옥트리 구조를 이용한 공간 분할 기법과 K-평균 군집화(K-Means Clustering) 방법 등이 있다. 그러나 옥트리 방식은 공간 분할 축과 이에 따른 분할된 공간의 크기가 고정되어 있어서 파티션 메쉬 면의 정렬 상태가 고르지 못하고 포함된 정점의 개수가 균등하지 못한 단점이 있다. 또한, K-평균군집화는 균등한 파티션을 얻을 수 있는 반면 반복처리와 최적화를 위해 많은 시간이 소요된다는 단점이 있다. 본 논문에서는 적응형 정점 군집화를 통해 빠른 시간에 균등한 메쉬 분할을 생성하는 알고리즘을 제안하고자 한다. 본 적응형 KD 트리는 메쉬가 포함된 경계상자(Bounding Box) 공간을 정점의 개수와 분할 축의 크기를 기준으로 계층적으로 분할한다. 그 결과 각 파티션 메쉬는 컴팩트성(compactness)의 특성을 유지하며 균등한 수의 정점을 포함하게 되어 각 파티션의 균등한 처리시간 및 메모리 소요량 등의 장점을 살려 향후 메쉬 간소화 및 압축 등의 다양한 메쉬 처리에 활용될 수 있기를 기대한다. 본 방법을 적용한 3차원 모델의 실험 통계와 분할된 파티션 메쉬의 시각적인 결과도 함께 제시하였다.

  • PDF

인공신경망 군집분석을 이용한 지역빈도해석에 관한 연구 - 한강유역을 중심으로 (Regional Frequency Analysis using the Artificial Neural Network Method - the Han River Basin)

  • 안현준;김성훈;신홍준;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.300-300
    • /
    • 2016
  • 지점빈도해석은 해당 지점에서 기록된 수문자료를 바탕으로 확률론적 방법을 이용하여 해당 지역의 수문학적 현상을 해석하는 방법이다. 최근 이상 기후현상을 통해 극치 사상이 발생하고 있다. 이러한 극치 사상은 지점빈도해석을 이용하여 확률수문량을 추정하는데 많은 영향을 미친다. 특히 해당 지점의 표본 크기가 작을수록 이러한 영향은 좀 더 크게 반영 될 수 있다. 반면 지역빈도해석은 지점의 표본 수가 적거나 수문자료의 수집이 불가능한 미계측지점인 경우, 해당 지점과 수문학적으로 동질하다고 여겨지는 주변 지점들의 자료를 확보하여 확률수문량을 추정함으로써 상대적으로 지점빈도해석 보다 roubst한 추정값을 얻을 수 있다. 따라서 최근 확률수문량 산정 기법으로 지역빈도해석 방법에 관한 관심이 높아지고 있는 실정이다. 지역구분은 지역빈도해석이 지점빈도해석과 구분 될 수 있는 큰 특징이고 지역구분 결과 따라 지역의 표본 크기가 결정되기 때문에 수문학적으로 동질한 지역을 나누는 방법은 매우 중요하다고 볼 수 있다. 본 연구에서는 한강유역을 대상으로 인공신경망을 이용한 군집분석을 수행하고 구분된 지역을 이용하여 지역빈도 해석을 수행하였다.

  • PDF

대용량 복수후보 TTS 방식에서 합성용 DB의 감량 방법 (A DB Pruning Method in a Large Corpus-Based TTS with Multiple Candidate Speech Segments)

  • 이정철;강태호
    • 한국음향학회지
    • /
    • 제28권6호
    • /
    • pp.572-577
    • /
    • 2009
  • 대용량 음성 DB를 사용하는 음편접합 TTS는 부가적인 신호처리 기술을 거의 사용하지 않고, 문맥을 반영하는 여러 합성유닛들을 결합해 합성음을 생성하기 때문에 높은 자연성을 가진다는 장점이 있다. 중복되는 음편의 감량을 위해서 음성인식분야에서 사용되는 결정트리 기반의 트라이폰 군집화 알고리즘을 사용할 수 있지만 음편 내의 음향적 천이 특성을 반영하기가 어렵고 문맥질의 적용이 체계적이지 못하여 TTS에 바로 적용하기 어렵다. 본 논문에서는 DB감량을 위해 결정 트리 기반의 새로운 음소 군집화 방법을 제안한다. 먼저 음편의 처음, 중간, 끝 3프레임의 각 13차 MFCC벡터를 통합한 39차의 벡터로 음편내의 변이성과 연결성을 표현한다. 결정 트리의 상위부분에서는 포괄적인 문맥질의를 하위부분에서는 세부적인 문맥질의를 적용시켰다. 그리고 기존 결정트리 시스템과 제안된 시스템과의 성능평가를 위하여 평가용 트라이폰 모델의 음편과 트리에서 탐색한 트라이폰 모델의 음편들 간의 음향적 유사도를 DTW를 적용하여 계산하였다. 실험결과 제안된 방법을 사용할 경우 전체 음성DB의 크기를 23%로 줄일 수 있었고, 음향적 유사도가 높은 음편을 선택함을 보이므로 향후 소용량 DB TTS에 적용 가능성을 보였다.

유전자 알고리즘을 이용한 서울시 군집화 최적 변수 선정 (Selection of Optimal Variables for Clustering of Seoul using Genetic Algorithm)

  • 김형진;정재훈;이정빈;김상민;허준
    • 대한공간정보학회지
    • /
    • 제22권4호
    • /
    • pp.175-181
    • /
    • 2014
  • 정부 3.0이라는 새로운 정부운영 계획과 함께 다양한 공공정보를 민간이 활용할 수 있게 되었으며, 특히 서울은 이러한 행정정보 공개 및 활용을 선도하고 있다. 공개된 행정정보를 통해 각 지역을 특징짓는 행정요소를 발견할 경우, 각종 행정정책을 위한 의사결정 수단에 반영할 수 있을 뿐만 아니라 특정 지역의 고객 특성을 파악하여 특화된 서비스나 상품을 판매하는 마케팅 수단으로도 사용할 수 있을 것으로 사료된다. 하지만, 방대한 양의 행정자료로부터 각 군집의 특성을 명확히 구분할 수 있는 최적의 조합을 찾는 과정은 조합최적화 문제로서 상당한 연산량을 요구한다. 본 연구에서는 서울시에서 제공하는 다차원 행정자료로부터 서울시를 대표하는 문화 산업의 중심인 서초구, 강남구, 송파구 등의 강남 3구를 다른 지역과 효과적으로 구분하는 행정요인를 찾고자 하였다. 방대한 양의 행정정보로부터 두 군집간의 차이점을 극대화하는 요인을 선별하기 위한 최적화 방법으로 유전자 알고리즘을 이용하였으며, 군집간 차이를 계산하는 척도로는 Dunn 지수를 이용하였다. 또한 유전자 알고리즘의 연산속도의 향상을 위해 Microsoft Azure에서 제공하는 cloud computing을 이용한 분산처리를 수행하였다. 자료로는 통계청으로 부터 취득한 총 718개의 행정자료를 이용하였으며, 그 중 28개가 최적 변수로 선정되었다. 검증을 위해 선정된 28개의 변수를 입력값으로 Ward의 최소분산법 및 K-means 알고리즘을 통한 군집화를 수행한 결과 두 경우 모두 강남 3구가 다른 지역으로부터 효과적으로 분류됨을 확인하였다.

조성 후 15년이 경과한 인공습지의 식물상과 식생구조 (Flora and Vegetation Structure in a 15-Year-Old Artificial Wetland)

  • 손덕주;이효혜미;이은주;조강현;권동민
    • Ecology and Resilient Infrastructure
    • /
    • 제2권1호
    • /
    • pp.54-63
    • /
    • 2015
  • 본 연구에서는 충북 진천에 위치한 총 면적 $3,000m^2$ 인 수질정화용 인공습지에서 조성 15년 후의 식물상과 식생구조를 파악하였다. 이곳 인공습지에서는 총 93종의 식물종이 출현하였고, 절대습지식물과 임의습지식물의 비율이 40%, 절대육상식물과 임의육상식물의 비율은 57%로 나타나 천이에 의하여 인공습지가 점차 육상화되었음을 확인할 수 있었다. 천이가 진행됨에 따라 천이 선구자 종인 1, 2년생 식물보다 다년생 식물의 종수 비율이 높아졌다. DCA (detrended correspondence analysis) 결과, 습지 군집 구조를 결정하는 중요한 환경요인은 수심이었다. 군집별 종다양성은 노랑꽃창포 군집, 벌개미취 군집 등의 육상화된 군집에서 높았다. 식물 군집별 습지지수는 벌개미취 군집은 육상, 삿갓사초 및 노랑꽃창포 군집은 임의습지, 노랑어리연꽃, 수련, 갈대, 새우가래 및 애기부들 군집은 절대습지로 나타났다. 결론적으로 인공습지에서는 천이에 의하여 식물 군집의 육상화가 진행되므로 퇴적과 수문 체계를 지속적으로 관리하여 습지식생을 유지할 필요가 있을 것으로 판단되었다.

아산만 저어류 -III. 정점간 양적 변동과 종조성- (The Demersal Fishes of Asan Bay -III. Spatial Variation In Abundance and Species Composition-)

  • 이태원
    • 한국수산과학회지
    • /
    • 제26권5호
    • /
    • pp.438-445
    • /
    • 1993
  • 1991년 가을에는 1992년 여름 사이 아산만에서 otter trawl로 저어류 자료를 수집하여 저어류의 계절 및 정점간의 군집구조를 분석하였다. 출현한 34종 중, 참서대(Cynoglossus joyneri), 민태(Johnius belengeri), 곤어리(Thrissa koreana) 및 등가시치(Zoarces gillii)가 총 채집개체수의 $93\%$를 차지하였다. 위의 4종 중 부어류인 곤어리를 제외한 우점 3종은 저질이 세립질인 만 내부에서 생물량이 많았다. 각 계절 정점간 군집구조를 rank correlation을 이용하여 주성분 분석한 결과, 정점간에는 큰 차이가 없었고 계절에 따른 군집구조 변화는 뚜렷하였으며, 그 변화는 수온, 혹은 수온과 상관관계를 갖는 요인에 의하여 좌우됨을 알 수 있었다. 조사해역은 수온의 연교차가 크고, 조류에 의한 해수의 혼합이 활발하여 이에 적응한 소수종이 우점하고 이 우점저어류는 퇴적물의 입도에 따라 그 분포가 결정되지만, 출현 개체수가 적은 대부분의 종은 정점간에 큰 차이를 보이지 않고 계절에 따라 군집구조가 변하여 가는 것으로 보인다.

  • PDF

비균일 분할 정점 군집화를 이용한 3차원 다각형 메쉬의 단순화 (Simplification of 3D Polygonal Mesh Using Non-Uniform Subdivision Vertex Clustering)

  • 김형석;박진우;김희수;한규필;하영호
    • 한국통신학회논문지
    • /
    • 제24권10B호
    • /
    • pp.1937-1945
    • /
    • 1999
  • 본 논문에서는 정점 군집화(vertex clustering) 방법에 기반한 3차원 물체의 단순한 기법을 제안한다. 제안한 방법은 3차원 물체의 국부 영역의 특성에 따라 군집화하는 격자의 크기를 다르게 한다. 격자의 크기는 삼각형의 법선 벡터와 정점 분포를 이용하여 결정한다. 인접한 삼각형의 법선 벡터가 이루는 각이 크고 정점들이 흩어져 있으면 작은 격자로 분할하여 자세한 표현을 한다. 격자의 분할 과정은 8진 나무(octree)로 나타낸다. 단순화 오차를 추정하기 위해 하우스도르프 거리(Hausdorff distance)를 이용한다. 제안한 방법은 정점 군집화의 적은 계산량과 효과적인 단순화의 장점을 그대로 유지할 수 있다. 그리고 3차원 물체의 특성에 따라 격자의 크기를 다르게 하므로 기존의 방법에 비해 단순화 오차가 적고 작은 영역의 변화까지 세밀히 나타낼 수 있다. 또한, 다양한 단순화 단계를 가지는 다해상도 모델로의 표현이 가능하고 격자 크기의 조절이 가능하므로 선택된 영역에 대해서 세밀한 표현도 가능하다.

  • PDF

정보공시 자료를 이용한 교육/연구성과 영향요인 추출 및 대학의 군집 분석 (Data Mining Analysis of Educational and Research Achievements of Korean Universities Using Public Open Data Services)

  • 신선미;김현철
    • 컴퓨터교육학회논문지
    • /
    • 제17권1호
    • /
    • pp.117-130
    • /
    • 2014
  • 본 연구의 목적은 통계 분석과 데이터마이닝 기법을 이용하여 대학정보공시 자료 속의 새로운 패턴이나 의미 있는 결과를 도출함으로써 대학의 교육역량 및 경쟁력을 나타내는 지표 개선에 유용한 지식을 제공하는 것이다. 이를 위해 교육/연구성과를 나타내는 취업률, 기술이전건수, 전임교원 1인당 논문수 지표의 영향요인 탐색 및 의사결정나무 모형 도출과 대학평가 관련지표를 이용한 대학의 군집분석을 실시하였다. 연구 결과, 대학 교육/연구성과 지표의 공통 영향요인은 신입생충원율, 재학생충원율, 전임교원 1인당 학생수로 나타났다. 군집분석에서는 전체 대학, 대학규모별, 소재지별로 각각 실시하였을 때 유명대학, 예체능 비이공계 종교지도자양성 대학, 그 외 대학으로 군집이 형성되는 양상을 보였고, 그 주요 영향요인으로는 대학 교육/연구성과 지표인 취업률, 기술이전건수 등으로 나타났다.

  • PDF

노이즈 환경에서 입자 군집 최적화 알고리즘의 성능 향상을 위한 통계적 가설 검정 기반 리샘플링 기법의 적용 (Application of Resampling Method based on Statistical Hypothesis Test for Improving the Performance of Particle Swarm Optimization in a Noisy Environment)

  • 최선한
    • 한국시뮬레이션학회논문지
    • /
    • 제28권4호
    • /
    • pp.21-32
    • /
    • 2019
  • 군집에 대한 사회적 행동 모델에 영감을 받은 군집 최적화 알고리즘은 복잡한 최적화 문제 해결에서부터 인공 신경망의 학습에까지 활용되는 대표적인 메타휴리스틱 최적화 알고리즘 중의 하나이다. 하지만 이 알고리즘은 기본적으로 확률적 노이즈가 존재하지 않는 결정적인 환경에서 개발되었기 때문에, 많은 경우 확률적 노이즈가 존재하는 실제 문제에 적용하기에 어려움이 있었다. 본 논문에서는 이를 개선하기 위하여 불확실 평가 기법이라고 정의되는 통계적 가설 검정 기반의 리샘플링 기법을 적용한다. 이 기법을 통하여 입자 군집 최적화 알고리즘의 성능에 가장 큰 영향을 미치는 입자들의 전역 최적을 정확하게 찾으므로 노이즈 환경에서 입자들이 최적해로 보다 정확하고 빠르게 수렴하도록 한다. 다양한 벤치마크 문제들에 대한 기존 알고리즘들과의 비교 실험 결과는 제안하는 알고리즘의 개선된 성능을 입증하고, 사례 연구의 결과는 본 연구의 필요성을 강조한다. 본 연구 결과가 4차 산업혁명 시대에 디지털 트윈 등을 통한 시뮬레이션 기반 시스템 최적화에 효과적으로 적용될 수 있을 것이라 기대한다.