• Title/Summary/Keyword: 국지기온

Search Result 94, Processing Time 0.024 seconds

Error Analysis of the Local Water Temperature Estimated by the Global Air Temperature Data (광역 기온자료를 이용한 국지 수온 추정오차 비교 분석)

  • Lee, Khil-Ha;Cho, Hong-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.4
    • /
    • pp.275-283
    • /
    • 2011
  • A local or site-specific water temperature is downscaled from the nation-wide air temperature that represents simulation by General Circulation Model (GCM). Both two-step and one-step method are tested and compared in three sites: Masan Bay, Lake Sihwa, and Nakdong River Estuary. Two-step method uses a linear regression model as the first step that converts nation-wide air temperature into local air temperature, and the corresponding coefficient of determination is in the range of 0.98~0.99. The second step that converts air temperature into water temperature uses a nonlinear curve, so called S-curve, and the corresponding root mean squared error (RMSE) is 2.07 for rising limb in Masan Bay, 1.93 for falling limb in Masan Bay, 2.59 for Lake Sihwa, and 1.58 for Nakdong River Estuary. In a similar way, one-step method is performed to directly convert nation-wade air temperature into local water temperature, and the corresponding RMSE is 2.28 for rising limb in Masan Bay, 1.89 for falling limb in Masan Bay, 2.55 for Lake Sihwa, and 1.52 for Nakdong River Estuary. Consequently both methods show a similar level of performance, and one-step method is recommendable in that it is simple and practical in relative terms.

Improvement of Air Temperature Analysis by Precise Spatial Data on a Local-scale - A Case Study of Eunpyeong New Town in Seoul - (상세 공간정보를 활용한 국지기온 분석 개선 - 서울 은평구 뉴타운을 사례로 -)

  • Yi, Chae-Yeon;An, Seung-Man;Kim, Kyu-Rang;Choi, Young-Jean;Scherer, Dieter
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.144-158
    • /
    • 2012
  • A higher spatial resolution is preferable to support the accuracy of detailed climate analysis in urban areas. Airborne LiDAR (Light Detection And Ranging) and satellite (KOMPSAT-2, Korea Multi-Purpose Satellite-2) images at 1 to 4 m resolution were utilized to produce digital elevation and building surface models as well as land cover maps at very high(5m) resolution. The Climate Analysis Seoul(CAS) was used to calculate the fractional coverage of land cover classes in built-up areas and thermal capacity of the buildings from their areal volumes. It then produced analyzed maps of local-scale temperature based on the old and new input data. For the verification of the accuracy improvement by the precise input data, the analyzed maps were compared to the surface temperature derived from the ASTER satellite image and to the ground observation at our detailed study region. After the enhancement, the ASTER temperature was highly correlated with the analyzed temperature at building (BS) areas (R=0.76) whereas there observed no correlation with the old input data. The difference of the air temperature deviation was reduced from 1.27 to 0.70K by the enhancement. The enhanced precision of the input data yielded reasonable and more accurate local-scale temperature analysis based on realistic surface models in built-up areas. The improved analysis tools can help urban planners evaluating their design scenarios to be prepared for the urban climate.

Seasonal Trend of Elevation Effect on Daily Air Temperature in Korea (일별 국지기온 결정에 미치는 관측지점 표고영향의 계절변동)

  • 윤진일;최재연;안재훈
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.96-104
    • /
    • 2001
  • Usage of ecosystem models has been extended to landscape scales for understanding the effects of environmental factors on natural and agro-ecosystems and for serving as their management decision tools. Accurate prediction of spatial variation in daily temperature is required for most ecosystem models to be applied to landscape scales. There are relatively few empirical evaluations of landscape-scale temperature prediction techniques in mountainous terrain such as Korean Peninsula. We derived a periodic function of seasonal lapse rate fluctuation from analysis of elevation effects on daily temperatures. Observed daily maximum and minimum temperature data at 63 standard stations in 1999 were regressed to the latitude, longitude, distance from the nearest coastline and altitude of the stations, and the optimum models with $r^2$ of 0.65 and above were selected. Partial regression coefficients for the altitude variable were plotted against day of year, and a numerical formula was determined for simulating the seasonal trend of daily lapse rate, i.e., partial regression coefficients. The formula in conjunction with an inverse distance weighted interpolation scheme was applied to predict daily temperatures at 267 sites, where observation data are available, on randomly selected dates for winter, spring and summer in 2000. The estimation errors were smaller and more consistent than the inverse distance weighting plus mean annual lapse rate scheme. We conclude that this method is simple and accurate enough to be used as an operational temperature interpolation scheme at landscape scale in Korea and should be applicable to elsewhere.

  • PDF

Nocturnal Surface Cooling and Cold Air Transport Analysis Based on High Density Observation - A Case Study of Eunpyeong New Town in Seoul (고밀도 관측자료를 이용한 야간 지면냉각과 찬공기 이동 분석 - 서울 은평구 뉴타운 사례)

  • Yi, Chae-Yeon;Kim, Kyu-Rang;Choi, Young-Jean;Won, Hye-Young;Scherer, Dieter
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.124-137
    • /
    • 2012
  • Climate analysis is important in urban planning for human comfort. Synoptic weather conditions can only resolve the 30% of local variance of wind conditions whereas 70% of the variance arise from local terrain, buildings, and other small scale thermal conditions. Climate Analysis Seoul (CAS) was developed to resolve such micro-scale climate. The Local-scale air temperature Deviation (LD) analysis map from CAS showed the co-existence of built-up and suburban areas in the study region (CR, Cold-air analysis Region) despite its small extent. Temperature, humidity, wind speed, and wind direction were monitored in CR. Hourly observed cooling rate agreed well with LD. Cold air production, transportation, and stagnation was visualized by the observed Vertical Temperature Gradient (VTG) along the small stream in CR. VTG observed at the upper-most stream can be divided into two components: radiative cooling and cold air inflow from outside. Radiative cooling exists regardless of the wind speed whereas cold air inflow occurs only with calm wind. From the regression analyses based on the wind speed, the inflow portion was determined as 84% of radiative cooling. Climate analysis in the future will be able to characterize the changes in cold air by urban development plan to support the human comfort.

Evaluation of Vegetative Growth in a Mature Stand of Korean Pine under Simulated Climatic condition (복원된 국지기후에 근거한 잣나무 성숙임분의 영양생장에 미치는 국지기후의 영향)

  • 김일현;신만용;김영채;전상근
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.105-113
    • /
    • 2001
  • This study was conducted to reveal the effects of local climatic conditions on the vegetative growth in a mature stand of Korean white pine based on climatic estimates. For this, the annual increments of stand variables such as DBH, height, basal area and volume were measured and estimated for seven years from 1974 to 1980. The local climatic conditions in the study site were also estimated by both a topoclimatological method and a spatial statistical technique. The local climatic conditions were then correlated with and regressed on the growth factors to reveal the relationships between the climatic estimates and the growth. It is found that relatively high temperatures had positive effects on the diameter growth. The yearly diameter growth increased when each of mean, maximum, and minimum temperature during the growing season was high. Height growth showed positively significant correlation with three climatic variables. The most important variable influencing height growth was the average of maximum temperature for 10 months from January to October. It means that the higher the average of maximum temperature for 10 months from January to October is, the more height growth of Korean white pine increases. Other climatic variables related to height growth were average of minimum temperature for 3 months in the early growing season and mean relative humidity for the growing season. Six climatic variables related to temperature had effects on basal area increment and all of them were positively correlated with basal area increment. Especially, temperatures from January to March were important factors affecting the basal area increment. In volume increment, high correlation was also recognized with most of temperature variables. This tendency was the same as the results in diameter and hight increments. This means that the volume growth increases when temperatures during the growing season are relatively high.

  • PDF

Seasonal Trend of Elevation Effect on Daily Air Temperature in Korea (산악지대 기온감율의 계절변이)

  • 윤영관;김경희;최재연;윤진일
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.139-142
    • /
    • 2001
  • 국지기온 결정인자 가운데 특히 고도의 영향이 현저하므로 비관측점과 공간내삽에 사용되는 주변 관측점간 표고편차를 기온감율에 의해 보정해주는 간단한 방법은 상대적으로 복잡한 다른 기법들에 비해 우수한 결과를 보인다 (Nalder and Wein, 1998). 지구대기의 건조단열감율은 -0.0098$^{\circ}C$m$^{-1}$로 상수이지만, 수증기로 포화된 대기의 기온감율은 지표 부근의 -0.004$^{\circ}C$m$^{-1}$부터 대류권 중간의 -0.007$^{\circ}C$m$^{-1}$를 거쳐 권계면 부근에서는 건조단열감율과 거의 같아진다 (Wallace and Hobbs, 1997).(중략)

  • PDF

풍동실험을 활용한 전주시 도심의 풍속변화에 대한 연구

  • Hwang, Ji-Uk;Yu, Gi-Pyo;An, Deuk-Su
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.11a
    • /
    • pp.47-51
    • /
    • 2006
  • 전주시의 도심 내에 고층건물의 건설전과 후의 풍속변화를 알아보기 위한 풍동실험을 통하여 다음과 같은 결론을 얻을 수 있었다. 고층건물의 건설은 도심주변의 풍속변화에 절대적 영향을 끼치는 요소인 것으로 파악되었다. 특히 건설 후에 최소 50% ${\sim}$ 최대 90%까지 풍속이 감소하는 부분이 발생하고 있다는 점은 고층건물과 같은 인공구조물의 건축과 입지가 주변의 기류변화가 급격한 영향을 주는 요소인 것이다. 이는 해당입지를 중심으로 바람의 원활한 소통이 발생하지 않아 국지적으로 도시기온이 신선한 바람의 흐름에 영향을 받지 않아 온실효과와 같은 현상을 발생시키게 되며, 이는 결과적으로 국지기온의 상승과 같은 문제를 발생시키게 됨을 의미하는 것이다.

  • PDF

A Numerical simulation for thermal environment by modification of land use in a local area. - An assessment on temperature, mixing height and wind field using nesting method. - (Land use 변조에 의한 국지지역의 열환경 수치모의 - 둥지격자를 통한 기온장, 대기혼합고 및 바람장 평가 -)

  • 김유근;이화운;문윤섭;임윤규
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.217-219
    • /
    • 2000
  • 도시기온분포에 영향을 미치는 요인은 매우 복잡하기 때문에 최근 세부적인 도시열환경 분포현황을 파악하기 위해서 국지규모 모델을 이용하여 그 사례를 밝히고 있다. 도시의 열환경구조가 land use와 밀접한 관련이 있다는 것은 이미 밝혀진 사실이나 보다 상세 격자를 이용한 도시지역의 열환경구조를 land use와 관련지어 연구 분석한 사례는 국내에서 거의 없는 실정이다. 즉, 국지지역의 열환경변화를 묘사하기 위해서는 종관기상장과 관련된 초기 및 경계조건 결정의 문제점을 해결하기 위한 다중격자체계의 모델 사용이 요구되는 실정이다. (중략)

  • PDF

Trend Analysis of Climate Change Using Surface Temperature in Korea (한반도 지표기온을 통한 기후변화 추세 분석)

  • 현명숙;오성남;방소영;이명주
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.516-517
    • /
    • 2003
  • IPCC 2001 보고서에 따른 최근 연구에 의하면, 20세기에 전 지구적으로 대략 0.4$^{\circ}C$~0.8$^{\circ}C$의 기온이 증가하는 결과를 보여주지만 이 증가경향이 시ㆍ공간적으로 일정하게 나타나는 것은 아니다. 지표기온의 변동성은 자연적인 원인과 인간의 활동에 의한 영향를 받을 수 있다. 한반도 온난화는 온실 기체와 도시화같은 원인에 의해 기온의 증가현상이 나타난다. 국지 혹은 지역적인 기후의 특성은 도시화와 같은 토지 이용도의 변화를 포함한 여러가지 인위적인 요소들에 의해 나타날 수 있다. (중략)

  • PDF

On the Change of Hydrologic Conditions due to Global Warming : 1. An Analysis on the Change of Temperature in Korea Peninsula using Regional Scale Model (지구온난화에 따른 수문환경의 변화와 관련하여 : 1. 국지규모 모형을 이용한 한반도 기온의 변화 분석)

  • An, Jae-Hyeon;Yun, Yong-Nam;Lee, Jae-Su
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.347-356
    • /
    • 2001
  • Even though the increase of greenhouse gases such as $CO_2$ is thought to be the main cause for global warming, its impact on global climate has not been revealed clearly in rather quantitative manners. However, researches using Genral Circulation Model(GCM) has shown that the accumulation of greenhouse gases increases the global mean temperature, which in turn impacts on the global water circulation pattern. A climate predictive capability is limited by lack of understanding of the different process governing the climate and hydrologic systems. The prediction of the complex responses of the fully coupled climate and hydrologic systems can be achieved only through development of models that adequately describe the relevant process at a wide range of spatial and temporal scales. These models must ultimately couple the atmospheres, oceans, and lad and will involve many submodels that properly represent the individual processes at work within the coupled components of systems. So far, there are no climate and related hydrologic models except local rainfall-runoff models in Korea. The purpose of this research is to predict the change of temperature in Korean Peninsula using regional scale model(IRSHAM96 model) and GCM data obtained from the increasing scenarios of $CO_2$ Korean Peninsula increased by $2.5^{\circ}C$ and the duration of Winter in $lxCO_2$ condition would be shorter the $2xCo_2$ condition due to global warming.

  • PDF