• Title/Summary/Keyword: 국제 표준 IEC 62541

Search Result 2, Processing Time 0.015 seconds

Study of N-Port Electric Vehicle Charging Systems Using OPC-UA (OPC UA를 이용한 N-Port EV 충전 시스템 연구)

  • Lee, Seong Joon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.8
    • /
    • pp.343-352
    • /
    • 2017
  • IEC62541, known as OPC-UA, is a standard communication protocol for Smart Grid (SG) and Smart Factory application platform. It was accepted as an IEC standard (IEC62541) in 2011 by IEC TC57, and is extending range of application as collaborating with other standrads. The government's policies to popularize EVs ("Workplace Charging Challenge"), the number of Electric vehicle which try to be charging in the factory is expected to increase. In this situation, indiscreet and uncontrolled EV charging can lead to some problems, such as excess of the peak demand capacity. Therefore, EVs, which is charging in SFs, must be monitoring and controlling to avoid and reduce peak demand. However, the standards for EVs charging differ from the standards for SFs. In other words, to increase the ease of use for drivers, and reduce risk for enterprise, we have needs of study to develop the protocols or to provide interoperability, for EVs charging in SFs. This paper deals with a EV charging management platform installing in a smart factory. And this platform can be easily integrated as part of SF management software. The main goal of this paper is to implement EV management system based on IEC61851 and IEC62541.

Design and Implementation of IEC62541-based Industry-Internet of Things Simulator for Meta-Factory (메타팩토리를 위한 IEC62541기반 IIoT·시뮬레이터 설계 및 구현)

  • Chae-Young Lim;Chae-Eun Yeo;Woo-jin Cho;Jae-Hoi Gu;Sang-Hyun Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.789-795
    • /
    • 2023
  • Digital-Twin are recognized as an important core technology for the realization of Smart Factories by simulating and optimizing the monitoring and predictive maintenance of manufacturing equipment and the operation of production lines in a digital space. To implement this system, we adopt the IEC62541-based OPC-UA (Open Platform Communications Unified-Architecture) Protocol, which has strengths in interoperability and connectivity between heterogeneous platforms. Therefore, In this paper, We designed and implemented an IIoT(Industry Internet of Things) system that connects heterogeneous platforms, and developed an OPC-UA simulator based on IEC 62541. We will present whether the data will be applied to the Digital-Twin Platform and whether it will work, and proceed with performance tests and evaluations. We evaluate the operation performance and OPC-UA performance of the Digital-Twin platform lightened by the proposed device, and present the optimal IEC62514-based simulator system. We proceeded with the performance evaluation of sending and receiving data with OPC-UA wrapping with the proposed simulator, and found that a lightweight Digital-Twin platform can be operated. This research can apply the OPC-UA protocol for implementing smart factory and meta-factory in the manufacturing shop floor with limited resources, avoiding the waste of time and space on the shop floor through the OPC-UA simulator. We expect that this will contribute to a significant improvement in efficiency by minimizing.