• Title/Summary/Keyword: 국소최대우도

Search Result 3, Processing Time 0.015 seconds

희박다항분포확률에 대한 국소최대우도 추정량

  • Baek, Jang-Seon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.29-34
    • /
    • 2002
  • $p=(p_{}1,p_{2},{\cdots},p_{k})^{T}$의 확률벡터를 가진 다항분포로부터 관측된 칸 돗수(cell frequency) 벡터가 $N=(N_{1},N_{2},{\cdots},N_{k})^{T}$이며 ${\sum}{\limits}_{j=1}^{k}N_{j}=n$이라 하자. 총돗수 n이 칸의 총갯수 k에 비하여 상대적으로 매우 작을 때 이러한 이산형 자료를 희박다항분포자료(sparse multinomial data)라 한다. 이러한 희박다항분포자료의 칸들이 순서화 되어 있을 때 우리는 i번째 칸의 확률 $p_{i}$를 돗수 추정량 $N_{j}/n$ 들을 평활함으로써 추정 할 수 있다. Aerts, et al.(1997)과 Baek(1998) 등에 의해 제안된 국소최소제곱기준에 근거한 국소다항커널추정량은 희박점근일치성의 좋은 성질을 가짐에도 불구하고 확률추정지가 음수값을 가질 수 있는 단점을 내포하고 있다. 본 연구에서는 이러한 단점을 극복하기 위하여 국소최대우도 기준에 근거한 새로운 커널추정량을 제안하고, 그것의 점근적 성질을 연구하였다.

  • PDF

Diagnostics for Estimated Smoothing Parameter by Generalized Maximum Likelihood Function (일반화최대우도함수에 의해 추정된 평활모수에 대한 진단)

  • Jung, Won-Tae;Lee, In-Suk;Jeong, Hae-Jeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.2
    • /
    • pp.257-262
    • /
    • 1996
  • When we are estimate the smoothing parameter in spline regression model, we deal the diagnostic of influence observations as posteriori analysis. When we use Generalized Maximum Likelihood Function as the estimation method of smoothing parameter, we propose the diagnostic measure for influencial observations in the obtained estimate, and we introduce the finding method of the proper smoothing parameter estimate.

  • PDF

Development of Estimation Algorithm of Latent Ability and Item Parameters in IRT (문항반응이론에서 피험자 능력 및 문항모수 추정 알고리즘 개발)

  • Choi, Hang-Seok;Cha, Kyung-Joon;Kim, Sung-Hoon;Park, Chung;Park, Young-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.3
    • /
    • pp.465-481
    • /
    • 2008
  • Item response theory(IRT) estimates latent ability of a subject based on the property of item and item parameters using item characteristics curve(ICC) of each item case. The initial value and another problems occurs when we try to estimate item parameters of IRT(e.g. the maximum likelihood estimate). Thus, we propose the asymptotic approximation method(AAM) to solve the above mentioned problems. We notice that the proposed method can be thought as an alternative to estimate item parameters when we have small size of data or need to estimate items with local fluctuations. We developed 'Any Assess' and tested reliability of the system result by simulating a practical use possibility.