• Title/Summary/Keyword: 국소적 자화반전

Search Result 2, Processing Time 0.016 seconds

Magnetic Domain Structure in Laser-Annealed NiFe/FeMn Bilayers (FeMn/NiFe에서 Laser 열처리에 의한 자구연구)

  • Choi, S.D.;Kim, S.W.;Jin, D.H.;Lee, M.S.;Ahn, J.H.;Joo, H.W.;Kim, Y.S.;Lee, K.A.;Lee, S.S.;Hwang, D.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.224-227
    • /
    • 2004
  • We have studied local magnetization reversal by laser annealing in exchange biased NiFe/FeMn bilayer. Local magnetization reversal was performed by using the DPSS laser under external magnetic field of 600G. When the laser illuminated the patterned film with the power of above 300 mW during 15 min, a magnetoresistance (MR) curve with symmetric peaks at the opposite field was obtained due to the local reversal of exchange biasing. The direction of exchange anisotropy in the locally reversed region can be restored by local laser annealing under alternating magnetic field, even if its MR peak was reduced by the damage and interdiffusion. The magnetic domain structure of the locally reversed region was measured by MFM. The new domains were generated by laser annealing near the exposed area.

Local Magnetization Reversal of FeMn/NiFe Films Using Laser Annealing (Laser 열처리를 이용한 FeMn/NiFe 박막의 자화 반전)

  • Choi, S.D.;Jin, D.H.;Kim, S.W.;Kim, Y.S.;Lee, K.A.;Lee, S.S.;Hwang, D.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.228-231
    • /
    • 2004
  • We have studied local magnetization reversal and magnetic properties induced by Laser annealing method in the strip-patterned Ta/NiFe/FeMn/Ta and Ta/NiFe/FeMn/NiFe/Ta multilayers fabricated by ion-beam deposition. The films were exposed to the emission of the DPSS (Diode Pumped Solid State, Nd:YAG) laser under 600 G. The laser beam intensity increased up to 440 mW. When the laser illuminated the patterned film with the power of above 200 m W, the intensity of MR peak located in +87 Oe shrunk. A new MR peak was generated at -63 Oe. When the laser power is 400 mW, the location of positive MR peak(H$\sub$ex/) was changed slightly from +87 Oe to +76 Oe, and the MR ratio was decreased from 0.9% to 0.1 %. On the other hand, the new (negative) MR peak shifted from -63 Oe to -80 Oe, with the MR ratio increased up to 0.3%. As the illuminated area expanded, the intensity of opposite MR peak increased and it of negative MR peak decreased. This proved that the local reversal of exchange biasing should be realized by laser annealing.