• Title/Summary/Keyword: 국부항복

Search Result 78, Processing Time 0.029 seconds

An Analytical Study on the Anchorage Design in Exterior R/C Beam-Column Connections (R/C조 외측 보-기둥 접합부의 정착설계에 대한 해석적 연구)

  • 최기봉
    • Computational Structural Engineering
    • /
    • v.5 no.4
    • /
    • pp.133-142
    • /
    • 1992
  • An analytical model was developed for predicting the pullout behavior of straight beam longitudinal bars anchored at exterior beam-column connections. The model incorporates a local bond constitutive simulation capable of considering the effects of anchored bar diameter, yield strength and the spacing, concrete compressive strength, and column pressure on the bond characteristics of deformed bars in confined conditions of exterior joints. The analytical techniques adopted in this study were shown to satisfactorily predict the results of pullout tests on straight bars embedded in confined concrete specimens. An evaluation of the ACI-ASCE Committee 352 development length requirements in exterior joint conditions was made using the developed analytical approach. The results of this analytical evaluation are indicative of the conservatism of the current development length requirements in the confined conditions of exterior joints.

  • PDF

Elasto-plastic Loading-unloading Nonlinear Analysis of Frames by Local Parameter Control (국부변수 조절을 통한 프레임의 탄소성 하중-제하 비선헝 해석)

  • 박문식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.435-444
    • /
    • 2001
  • Even todays, accurate and efficient algorithms for the large deformation analysis of elastoplastic frame structures lack due to the complexities of kinematics, material nonlinearities and numerical methods to cater for. The author suggests appropriate beam element based upon the incremental formulation from the 3D rod theory where Cauchy stress and engineering strain are variables to incorporate plasticity equations so that objectivity may be satisfied. A rectum mapping methods which can integrate and satisfy yield criteria efficiently is suggested and a continuation method which has global convergency and quadratic speed is developed as well. leading-unloading example problems are tested and the ideas are proved to be valuable.

  • PDF

Collision Strength Analysis of Double Hull Tanker (이중선체(二重船體) 유조선(油槽船)의 충돌강도해석(衝突强度解析))

  • J.K. Paik;P.T. Pedersen
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.103-117
    • /
    • 1995
  • A design-oriented method for analysis of the structural damage due to ship collisions is developed by using the idealized structural unit method(ISUM). The method takes into account yielding, crushing, rupture, the coupling effects between local and global failure of the structure, the influence of strain-rate sensitivity and the gap/contact conditions. The method is verified by a comparison of experimetal and numerical results obtained from test models of double-skin plated structures in collision/grounding situations with the present solutions. As an illustrative example, the method has been used for analyses of a side collision of a double-hull tanker. Several factors affecting ship collision response. namely the collision speed and the scantlings/arrangements of strength members, are discussed.

  • PDF

Numerical Analysis of Stress Regimes in and around Inactive and Active Fault Zones (비활성 그리고 활성 단층지역 내부와 주변에서의 응력장에 대한 수치적 분석)

  • Jeong, Woo-Chang;Song, Jai-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.117-125
    • /
    • 2001
  • This paper presented the analysis of stress regimes in and around inactive and active fault zones. The stress regime in the vicinity of an existing inactive fault zone is dependent on the orientation of the fault with respect to the current stress field and the contrast between the elastic properties of the faulted rock and those of the surrounding rock. In the analysis of stress regimes around an active fault zone, if the yielding stress is exceeded during loading, the localized shearing in a fault zone will result in weakness with mean stresses in the fault becoming lower than those in the surrounding rock. It can be expected that such stress gradients will induce fluid flow towards the faults zone.

  • PDF

Ultimate Longitudinal Strength Analysis of Ship′s Hull Girder by Idealized Structural Unit Method (이상화(理想化) 구조요소법(構造要素法)에 의한 선체구조(船體構造)의 최종종강도(最終縱强度) 해석(解析))

  • Jeom-K. Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.139-149
    • /
    • 1991
  • In this paper, an efficient method for the ultimate longitudinal strength analysis of the double skin hull girder is presented by using idealized structural unit method. Idealized plate element subjected to biaxial load is developed taking account of initial deflection and welding residual stress. Interaction effect between local and global buckling in the whole structure is also taken into consideration. The reserve strength factor and reliability index for the example 40K double skin product oil carrier are evacuated against the ultimate longitudinal strength. It is concluded that the prudent method seems to be useful in the sense that the computing time required is very short while giving the reasonable solution.

  • PDF

Design Considerations and Pull-Out Behavior of Mechanical Anchor of Reinforcement (철근 기계적 정착장치의 설계 고려사항과 인발특성)

  • 천성철;김대영
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.593-601
    • /
    • 2001
  • In RC structure, sufficient anchorage of reinforcement is necessary for the member to produce the full strength. Generally, conventional standard hook is used for the reinforcement's anchorage. However, the use of standard hook results in steel congestion, making fabrication and construction difficult. Mechanical anchor offers a potential solution to these problems and may also ease fabrication, construction and concrete placement. In this paper, the required characteristics and the design considerations of mechanical anchor were studied. Also, the mechanical anchor was designed according to the requirements. To investigate the pull-out behavior and properness of mechanical anchorage, pull-out tests were performed. The parameters of tests were embedment length, diameter of reinforcement, concrete compressive strength, and spacing of reinforcements. The strengths of mechanical anchor were consistent with the predictions by CCD method. The slip between mechanical anchor and concrete could be controlled under 0.2mm. Therefore, the mechanical anchor with adequate embedment could be used for reinforcement's anchorage. However, it was observed that the strength of mechanical anchors with short spacing of reinforcements was greatly reduced. To apply the mechanical anchor in practice (e.g. anchorage of the beams reinforcements in beam-column joint), other effects that affect the mechanical anchor mechanism, such as confinement effect of adjacent member from frame action or effects of shear reinforcement, should be considered.

Framed Steel Plate Wall subject to Cyclic Lateral Load (주기하중을 받는 골조강판벽의 실험연구)

  • Park, Hong Gun;Kwack, Jae Hyuk;Jeon, Sang Woo;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.781-792
    • /
    • 2004
  • Experiments were performed to study the cyclic behavior of framed steel walls with thin web plates. Five specimens of single-bay and three-story steel plate walls were tested for cyclic lateral load. The parameters for the test specimens included the plate thickness and the column strength. Based on the test results, the strength, deformability, and energy dissipation capacity of the framed steel walls were studied. The test results showed that the behavioral characteristics of the framed steel walls with thin web plates were different in many aspects from those of the conventional braced frame, and the steel wall with a stiffened web plate exhibited cantilever action, high strength, and low ductility. With the framed steel plate walls, local plate buckling and tension-field action developed in the thin web plates, and plastic deformation was uniformly distributed along the wall's height. As a result, the framed steel plate walls exhibited combined flexural and shear deformation, but they also showed high strength and energy dissipation capacity. Moreover, such walls have high deformability, which was equivalent to that of the conventional moment frame. Frame members such as columns and beams, however, must be designed to resist the tension-field action of the thin web plates. If the column does not have sufficient strength, and if its sections are not compact enough, the overall strength of the framed steel wall might be significantly decreased by the development of the soft-story mechanism. The framed steel walls with thin web plates have advantages, such as high deformability and high strength. Therefore, they can be used as ductile elements in earthquake-resistant systems.

An Alternative Perspective to Resolve Modelling Uncertainty in Reliability Analysis for D/t Limitation Models of CFST (CFST의 D/t 제한모델들에 대한 신뢰성해석에서 모델링불확실성을 해결하는 선택적 방법)

  • Han, Taek Hee;Kim, Jung Joong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.409-415
    • /
    • 2015
  • For the design of Concrete-Filled Steel Tube(CFST) columns, the outside diameter D to the steel tube thickness t ratio(D/t ratio) is limited to prevent the local buckling of steel tubes. Each design code proposes the respective model to compute the maximum D/t ratio using the yield strength of steel $f_y$ or $f_y$ and the elastic modulus of steel E. Considering the uncertainty in $f_y$ and E, the reliability index ${beta}$ for the local buckling of a CFST section can be calculated by formulating the limit state function including the maximum D/t models. The resulted ${beta}$ depends on the maximum D/t model used for the reliability analysis. This variability in reliability analysis is due to ambiguity in choosing computational models and it is called as "modelling uncertainty." This uncertainty can be considered as "non-specificity" of an epistemic uncertainty and modelled by constructing possibility distribution functions. In this study, three different computation models for the maximum D/t ratio are used to conduct reliability analyses for the local buckling of a CFST section and the reliability index ${beta}$ will be computed respectively. The "non-specific ${beta}s$" will be modelled by possibility distribution function and a metric, degree of confirmation, is measured from the possibility distribution function. It is shown that the degree of confirmation increases when ${beta}$ decreases. Conclusively, a new set of reliability indices associated with a degree of confirmation is determined and it is allowed to decide reliability index for the local buckling of a CFST section with an acceptable confirmation level.

Flexural Test of H-Shape Members Fabricated of High-Strength Steel with Considering Local Buckling (국부좌굴을 고려한 고강도 조립 H형강 부재의 휨성능 실험)

  • Lee, Cheol-Ho;Han, Kyu-Hong;Park, Chang-Hee;Kim, Jin-Ho;Lee, Seung-Eun;Ha, Tae-Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.417-428
    • /
    • 2011
  • Depending on the plastic deformation capacity required, structural steel design under the current codes can be classified into three categories: elastic, plastic, and seismic design. Most of the current steel codes explicitly forbid the use of a steel material with a yield strength higher than 450 MPa in the plastic design because of the concerns about its low plastic deformation capacity as well as the lack of test data on local and lateral torsional buckling behavior. In this study, flexural tests on full-scale H-shape members built with SM490A (ordinary steel or benchmark material) and HSB800 (high-strength steel) were carried out. The primary objective was to investigate the appropriateness of extrapolating the local buckling criterion of the current codes, which was originally developed for normal-strength steel, to the case of high-strength steel. All the SM490A specimens performed consistently with the current code criteria and exhibited sufficient strength and ductility. The performance of the HSB800 specimens was also very satisfactory from the strength perspective; even the specimens with a noncompact and slender flange developed the plastic moment capacity. The HSB800 specimens, however, showed an inferior plastic rotation capacity due to the premature tensile fracture of the beam bottom flange beneath the vertical stiffener at the loading point. The plastic rotation capacity that was achieved was less than 3 (or the minimum level required for a plastic design). Although the test results in this study indicate that the extrapolation of the current flange local-buckling criterion to the case of high-strength steel is conservative from the elastic design perspective, further testing together with an associated analytical study is required to identify the causes of the tensile fracture and to establish a flange slenderness criterion that is more appropriate for high-strength steel.

Contact Analysis of a Spherical Particle Between Elastomeric Seal and Steel Surface (시일과 스틸면 사이에 구형입자가 있는 접촉문제의 해석)

  • Park, Tae-Jo;Jo, Hyeon-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.161-166
    • /
    • 2010
  • Elastomeric seals are widely used in dynamic seal applications, and it is well known that the sealing surfaces can be gradually worn out. Abrasive wear is known to be the most dominant factor; however, little research has been carried out on this problem until now. In this study, a new contact problem related to elastomeric seals-a small spherical particle and steel surface-was modeled and analyzed using MARC. Variations of von-Mises and residual stress distributions as well as deformed seal and steel surface shapes with seal materials and interferences are presented. The stress distribution and surface deformation are highly affected by the elastic properties of seal. For PTFE, the maximum von-Mises stress exceeds the yield strength, and plastic deformation occurs on the steel surface. Therefore, the sealing surface can also be worn down by sub-surface fatigue due to intervening hard particles in the sealing surfaces together with the well-known abrasion.