• Title/Summary/Keyword: 국부항복

Search Result 78, Processing Time 0.026 seconds

The Structural Behavior of CFCT Column to H-Beam Connections With Longitudinal Rib of Column at Joint (종리브로 보강한 콘크리트충전원형강관기둥-H형강보 접합부의 구조적 거동에 관한 연구)

  • Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.291-301
    • /
    • 1998
  • This paper is a study on the structural behavior of CFCT(Concrete-Filled Circular Tubular) column to H-beam connections with longitudinal rib. The important parameters are being longitudinal rib or not. variable column thickness(5.8mm. 9.2mm. 12.0mm. 15.0mm) around the joint between CFCT and H-beam and the width of flange to diameter. Test results are summarized for the strength, initial stiffness, failure mode and energy absorption capacities of each specimen. These are compared with the theoretical results(Yield line theory, numerical analysis). Therefore, the purpose of this paper is to investigate the stiffness and the strength of connections to evaluate the structural behavior of the CFCT column to H-beam connections with longitudinal rib.

  • PDF

An Experimental Study on TR-CFT Columns subjected to Axial Force and Cyclic Lateral Loads (축력과 반복수평력을 받는 TR-CFT기둥에 관한 실험적 연구)

  • Park, Jai Woo;Kim, Jin Ho;Hong, Young Kyun;Hong, Gi Soup
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.403-411
    • /
    • 2007
  • CFT (Concrete filled steel tube) column has become popular for building construction due to not only its composite effect but also economic effect. However, the conventional CFT column also has its own disadvantages having plastic buckling at the end of column followed by the reduction of strength by yielding of steel tube. An experiment on TR-CFT (Transversely reinforced CFT) column are conducted for making up for conventional CFT column's disadvantages. The experiment parameters are strength of concrete, the layer numbers of carbon fiber sheet. In this study, hysteretic curve, initial stiffness, strength, plastic deformation capacity, and dissipated energy are compared and analyzed between CFT and TR-CFT columns.

Sensitivity Analysis of Steel Frames Subjected to Progressive Collapse (철골조의 연쇄붕괴 민감도 해석)

  • Park, Jun-Hei;Kim, Jin-Koo;Lee, Tae-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.211-216
    • /
    • 2008
  • Recently a lot of researches have been conducted on the progressive collapse of structures which is the total collapse of structures initiated by localized damage. Most of the previous studies on the field of progressive collapse have followed deterministic approach without considering uncertainty involved in design variables, which results in unknown reliability of the analysis results. In this study the sensitivity analyses are carried out with design variables such as yield strength, live load, damping ratio, and elastic modulus on the vertical deflection of the joint from which a column is suddenly removed. The Monte Calro simulation, tornado diagram method, and the first order second moment method(FOSM) are applied for the sensitivity study. According to the nonlinear static analysis results, the vertical deflection is most affected by the variation of yield strength of beams. The nonlinear dynamic analyses show that the behaviour of model structures is highly sensitive to variation of the yield strength of beams and the structural damping ratio.

Forming Limit Diagrams of Zircaloy-4 and Zirlo Sheets for Stamping of Spacer Grids of Nuclear Fuel Rods (핵연료 지지격자 성형을 위한 Zircaloy-4와 Zirlo 판재의 성형한계도 예측)

  • Seo, Yun-Mi;Hyun, Hong-Chul;Lee, Hyung-Yil;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.889-897
    • /
    • 2011
  • In this work, we investigated the theoretical forming limit models for Zircaloy-4 and Zirlo used for spacer grid of nuclear fuel rods. Tensile and anisotropy tests were performed to obtain stress-strain curves and anisotropic coefficients. The experimental forming limit diagrams (FLD) for two materials were obtained by dome stretching tests following NUMISHEET 96. Theoretical FLD depends on FL models and yield criteria. To obtain the right hand side (RHS) of FLD, we applied the FL models (Swift's diffuse necking, M-K theory, S-R vertex theory) to Zircaloy-4 and Zirlo sheets. Hill's local necking theory was adopted for the left hand side (LHS) of FLD. To consider the anisotropy of sheets, the yield criteria of Hill and Hosford were applied. Comparing the predicted curves with the experimental data, we found that the RHS of FLD for Zircaloy-4 can be described by the Swift model (with the Hill's criterion), while the LHS of the FLD can be explained by Hill model. The FLD for Zirlo can be explained by the S-R model and the Hosford's criterion (a = 8).

Cyclic Local Buckling Behavior of Steel Members with Web Opening (유공 강구조 부재의 반복 국부좌굴거동)

  • Lee, EunTaik;Ko, KaYeon;Kang, JaeHoon;Chang, KyoungHo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.423-433
    • /
    • 2003
  • Many study have been performed to describe the elastic and inelastic behavior of H-shaped beams with web openings that generally concentrated on the monotonic loading condition and concentric web opening. The findings of the studies led Darwin to propose formulas for the design of beams with web openings considering local buckling. While the formulas are simple and useful in real situation, more studies arc needed on their cyclic loading condition. In this experimental study, 12 H-shaped beams with web openings under cyclic loading condition were investigated. The dimension criteria based on the formulas proposed by Darwin were examined. The suitability of existing design formulas and the effects of plastic hinges on beams with web openings and of local buckling around web openings on the beam strength under cyclic loading were also studied. This was done by observing their behavior with various dimensional openings, eccentric per cent, and stiffeners.

A Simplified Approach to the Analysis of the Ultimate Compressive Strength of Welded Stiffened Plates (용접된 보강판의 압축 최종 강도의 간이 해석법)

  • C.D. Jang;Seung-Il Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.141-154
    • /
    • 1993
  • In this paper, a method to calculate the ultimate compressive strength of welded one-sided stiffened plates simply supported along all edges is proposed. At first initial imperfections such as distortions and residual stresses due to welding are predicted by using simplified methods. Then, the collapse modes of the stiffened plate are assumed and collapse loads for each mode are calculated. Among these loads, the lowest value is selected as the ultimate strength of the plate. Collapse modes are assumed as follows ; (1) Overall buckling of the stiffened plate$\rightarrow$Overall collapse due to stiffener bending (2) Local buckling of the plate part$\rightarrow$Local collapse of the plate part$\rightarrow$Overall collapse due to stiffener yielding (3) Local buckling of the plate part$\rightarrow$Overall collapse due to stiffener berthing (4) Local buckling of the plate part$\rightarrow$Local collapse of the plate part$\rightarrow$Overall collapse due to stiffener tripping. The elastic large deflection analysis based on the Rayleigh-Ritz method is carried out, and plastic analysis assuming hinge lines is also carried out. Collapse load is defined as the cross point of the two analysis curves. This method enables the utimate strength to be calculated with small computing time and a good accuracy. Using the present method, characteristics of the stiffener including torsional rigidity, bending and tripping can also be clarified.

  • PDF

Half-Scaled Substructure Test for the Performance Evaluation of a Transmission Tower subjected to Wind Load (송전철탑의 내풍안전성 평가를 위한 1/2축소부분구조 실험)

  • Moon, Byoung-Wook;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.641-652
    • /
    • 2007
  • In this paper, a half-scaled substructure test was performed to evaluate the buckling and structural safety of an existing transmission tower subjected to wind load. A loading scheme was devised to reproduce the dead and wind loads of a prototype transmission tower, which uses a triangular jig that is mounted on the reduced model to which the similarity law of a half length was applied. As a result of the preliminary numerical analysis carried out to evaluate the stability of a specimen for the design load, is was confirmed that the calculated axial forces of tower leg members were distributed to $80{\sim}90%$ of an admissible buckling load. When the substructured transmission tower was loaded by 270% of its maximum admissible buckling load, it was failed due to the local buckling that is occurred in joints with weak constraints for out-of-plane behavior of leg members. By inspection of load-displacement curves, displacements and strains of members, it is considered that this local buckling was due to additional eccentric force by unbalanced deformation because the time that is reached to yielding stress due to the bending moment is different at each point of a same section.

Axial Loading Behaviors of Square Concrete-Filled Tubular Columns with Large Width-to-Thickness Ratio Retrofitted using Carbon Fiber Reinforced Polymer Sheets(CFRP Sheets) (탄소섬유쉬트(CFRP Sheets)로 보강된 폭두께비가 큰 콘크리트 충전 각형강관 기둥의 중심축하중거동)

  • Park, Jai Woo;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.169-176
    • /
    • 2014
  • This paper presents the experimental results of behavior of square CFT columns with large the width-ro thickness ratio strengthened with carbon fiber reinforced polymers (CFRP) sheets subjected to concentrated axial loading. The main parameters were b/t ratio and the number of CFRP layers and 6 specimens were fabricated. The values of b/t were ranged from 60 to 100. From the tests, Maximum increase of 16% was also achieved in axial-load capacity with three transverse layered CFRP applied on four sides of steel tubes. The load capacity decreased up to 41% comparing with nominal load capacity of unstrengthened CFT column. However, for CFRP strengthened CFT, the load capacity decreased up to 32%. Finally, from the load-strain relationships, the local buckling occurred before yield point of steel tubes. Also, from the load-strain relationships, it was observed that local buckling were delayed on CFT columns by CFRP sheets retrofitting.

An Investigation into differences between codes for the Moment Strength of Deck Plates (데크플레이트의 휨 강도에 관한 기준 비교 연구)

  • Shin, Tae Song
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.25-31
    • /
    • 2003
  • This research aimed to experimentally and theoretically investigate the moment strength of deck plates. A moment experiment was carried out using a full-scale 14 specimen. To prevent local buckling, the point load was applied at 1/4 points. After the experiment, theoretical analysis was conducted and the differences between various codes were identified. The experimental results were compared with AISI (the American Iron and Steel Institute), EC (Euro Code) 3, and KS (Korea Standard) codes. Analysis results are summarized as follows: (1) the failure mode was influenced by local buckling at the midpoint of the beam and/or at the intermediate loading point: (2) if yielding first occurred at the tension side, the moment strength would increase as the plastic reservation of the tension zone acted: (3) the experimental results were closest to the EC3 codes in which the partial plastic reservation was considered; (4) statistical evaluation based on the EC3 Annex Z showed that the partial resistance safety coefficient calculated applying to the EC3 formula, $^{\circ}{_M}$, was placed within 1.1 which was the target value of EC3 code; and (5) the analytical power of AISI and KS codeswere expected to improve into the level of EC3 codes if the concept of plastic reservation of the tension side would be introduced to them.

Flexural strength of high-strength concrete filled steel tube columns strengthened by carbon fiber sheets (탄소섬유쉬트로 보강한 고강도 콘크리트 충전강관(CFT) 기둥의 휨내력에 관한 연구)

  • Park, Jai-Woo;Hong, Young-Kyun;Hong, Gi-Soup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • The CFT (Concrete Filled Steel Tube) columns became popular in high rise building construction due to not only its composite effect but also economic advantage. However, it has been pointed out in various previous researches that the current practice in CFT columns may lead the steel tube to probable local buckling at critical sections of the columns right after yielding. To resolve such a problem, the TR-CFT (Transversely Reinforced Concrete Filled Steel Tube) column is proposed to control or at least delay the local buckling state at the critical section by wrapping the CFT columns with carbon fiber sheet. The validity of the proposed column system is validated through the present paper by observing the experimental performance and comparing it with the analytical prediction of the TR-CFT columns with hish strength concrete. It is also shown that the current design code provisions such as ACI-318, in which the contribution of concrete confining effect filled in steel tube is not appropriately accounted for, may contain too much conservatism.