• Title/Summary/Keyword: 구조 보강

Search Result 2,838, Processing Time 0.027 seconds

An experimental study on the influence of undular bore on the hydraulic stability at Shinwol rainwater storage and drainage system (불규칙 단파가 신월저류배수시설의 수리적 안정성에 미치는 영향에 대한 실험 연구)

  • Oh, Jun Oh
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.313-323
    • /
    • 2019
  • Deep Tunnel system is a large-scale urban flood control facility installed underground in order to reinforce the lack of drainage systems in developed cities. In a structure like a deep tunnel system, the undular bore generated in the downstream causes a problem in the hydraulic stability of the tunnel. In this study, to investigate the influence of the undular bore on the hydraulic stability at the "Shinwol rainwater storage and drainage system", under construction for the first time in the country, a hydraulic model experiment was conducted on various flooding inflow scenarios. As a result of the hydraulic model experiment carried out in this study, the undular bore generated downstream is trapped in the pipe while moving to upstream, pushes the compressed air. It is judged that overflow occurred by choking the vertical drop shaft in the process when this compressed air is being exhaust through the upstream vertical drop shaft and blocking flood inflow. In addition, the analysis of velocity of undular bore shows that the undular bore transfers energy, and at this time, the pressure rose in the pipe and the velocity increment occurred of the undular bore. Further studies are needed to predict the size and velocity of undular bore, which plays an important role in the hydraulic stability of the tunnel in the deep tunnel system.

Evaluation of Shallow Foundation Behavior on Basalt Rock Layers With Clinker and Sediment Layers Reinforced Using Cement Grouting (현무암층 사이에 존재하는 클링커층과 퇴적층의 시멘트 그라우팅 보강에 따른 얕은 기초 거동 평가)

  • Lee, Kicheol;Shin, Hyunkang;Jung, Hyuksang;Kim, Donghoon;Ryu, Yongsun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.33-44
    • /
    • 2019
  • Clinker layer is a stratum structure distributed in volcanic area such as Jeju Island. The clinker layers were formed in between the repetitive action of eruption and solidification of lava flows. Since the clinker layer contains a large amount of voids accompanied by the lava gas ejection process, there is a possibility of inducing overall stability of the ground due to the low stiffness and strength of the clinker layer. Therefore, in this study, site investigation was carried out at both ends of the 00 bridge where the clinker layers exist. And, based on the ground survey results, the behavior of shallow foundations was analyzed numerically. In addition, the improved shallow foundation behavior in grouting substitution using the chemical injection method of the clinker layer was compared with the shallow foundation behavior in the ground, and the grouting substitution efficiency of each layer was analyzed. As a result, the bearing capacity, the replacement efficiency and elastic settlement were different according to the presence or absence of the sediment layer. This is because the sediment layer has a lower stiffness and density than the clinker layer.

Effect of Overburden Stress on Bulb Shapes of Horizontal Compaction Grout in Loose Sand: 2D-scaled Experimental Study (상부 응력이 수평 압밀 그라우팅 구근 형상에 미치는 영향: 2차원 축소 모형 실험 연구)

  • Joo, Hyun-Woo;Baek, Seung-Hun;Kwon, Tae-Hyuk;Han, Jin-Tae;Lee, Ju-Hyung;Yoo, Wan-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.107-116
    • /
    • 2020
  • The compaction grouting technique is widely used to improve the liquefaction resistance of loose sands that are liquefaction-prone. Particularly, the horizontal injection of compaction grout is proposed for the liquefiable ground with an overlying structure as it does not allow the vertical compaction grouting. However, there has been limited number of researches on the horizontal compaction grouting. Therefore, this study explores the grout bulb shape and expansion direction in loose sand. A series of scaled two-dimensional experiments on the horizontal compaction grouting was conducted varying the overburden stress. The results show that the grout bulb grows in an elliptical shape though its directivity of major axis changes with the overburden effective stress and relative density. The grout bulb expands faster in a horizontal direction under a low overburden stress with a small relative density. The higher overburden stress and the greater relative density cause the more circular shape with the faster expansion in a vertical direction. The presented finding is expected to contribute to accurate and efficient design of the horizontal compaction grouting method.

Development of Fire Detection Model for Underground Utility Facilities Using Deep Learning : Training Data Supplement and Bias Optimization (딥러닝 기반 지하공동구 화재 탐지 모델 개발 : 학습데이터 보강 및 편향 최적화)

  • Kim, Jeongsoo;Lee, Chan-Woo;Park, Seung-Hwa;Lee, Jong-Hyun;Hong, Chang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.320-330
    • /
    • 2020
  • Fire is difficult to achieve good performance in image detection using deep learning because of its high irregularity. In particular, there is little data on fire detection in underground utility facilities, which have poor light conditions and many objects similar to fire. These make fire detection challenging and cause low performance of deep learning models. Therefore, this study proposed a fire detection model using deep learning and estimated the performance of the model. The proposed model was designed using a combination of a basic convolutional neural network, Inception block of GoogleNet, and Skip connection of ResNet to optimize the deep learning model for fire detection under underground utility facilities. In addition, a training technique for the model was proposed. To examine the effectiveness of the method, the trained model was applied to fire images, which included fire and non-fire (which can be misunderstood as a fire) objects under the underground facilities or similar conditions, and results were analyzed. Metrics, such as precision and recall from deep learning models of other studies, were compared with those of the proposed model to estimate the model performance qualitatively. The results showed that the proposed model has high precision and recall for fire detection under low light intensity and both low erroneous and missing detection capabilities for things similar to fire.

Comparative Analysis of Biomechanical Behaviors on Lumbar with Titanium and Carbon Fiber Reinforced PEEK Connecting Rods for Fusion Surgery (티타늄과 탄소 섬유 강화 PEEK로 구성된 요추 유합술용 연결봉의 의공학적 영향에 대한 비교 분석)

  • Seo, Hye-Sung;Kang, Hae-Seong;Chun, Houng-Jae
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.186-191
    • /
    • 2021
  • The lumbar spinal fusion is a treatment performed to restore the stability of the degenerated lumbar. In this study, the intervertebral discs between two or more segments are removed and a bone graft is inserted to harden the segments. The pedicle screw system is inserted to vertebral bodies to fix two or more segments so that they can be firmly fused. In this study, a total of 7 patient-specific lumbar finite element models were created and pedicle screw systems were installed. The connecting rods made of titanium and CFR-PEEK was inserted to the generated models. Finite element analysis was conducted for four representative spine behaviors and statistical analysis was performed to investigate the biomechanical effects by the material properties of connecting rods. The intradiscal pressure of adjacent segments and the range of motion of the joints of each segment were investigated. In the subjects who used CFR-PEEK instead of Ti for connecting rods, the intradiscal pressure of adjacent segments tend to decrease and the range of motion of each segment tend to increase. However, no statistically significant difference in tendency was observed under all loading conditions.

Mechanical Modeling of Pen Drop Test for Protection of Ultra-Thin Glass Layer (초박형 유리층 보호를 위한 펜 낙하 시험의 기계적 모델링)

  • Oh, Eun Sung;Oh, Seung Jin;Lee, Sun-Woo;Jeon, Seung-Min;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.49-53
    • /
    • 2022
  • Ultra-thin glass (UTG) has been widely used in foldable display as a cover window for the protection of display and has a great potential for rollable display and various flexible electronics. The foldable display is under impact loading by bending and touch pen and exposed to other external impact loads such as drop while people are using it. These external impact loads can cause cracks or fracture to UTG because it is very thin under 100 ㎛ as well as brittle. Cracking and fracture lead to severe reliability problems for foldable smartphone. Thus, this study constructs finite element analysis (FEA) model for the pen drop test which can measure the impact resistance of UTG and conducts mechanical modeling to improve the reliability of UTG under impact loading. When a protective layer is placed to an upper layer or lower layer of UTG layer, stress mechanism which is applied to the UTG layer by pen drop is analyzed and an optimized structure is suggested for reliability improvement of UTG layer. Furthermore, maximum principal stress values applied at the UTG layer are analyzed according to pen drop height to obtain maximum pen drop height based on the strength of UTG.

A Study on the Passive Vibration Control of Large Scale Solar Array with High Damping Yoke Structure (고댐핑 요크 구조 적용 대형 태양전지판의 수동형 제진에 관한 연구)

  • Park, Jae-Hyeon;Park, Yeon-Hyeok;Park, Sung-Woo;Kang, Soo-Jin;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.1-7
    • /
    • 2022
  • Recently, satellites equipped with high-performance electronics have required higher power consumption because of the advancement of satellite missions. For this reason, the size of the solar panel is gradually increasing to meet the required power budget. Increasing the size and weight of the solar panel is one of the factors that induce the elastic vibration of the flexible solar panel during the highly agile maneuvering of the satellite or the mode of vibration coupling to the satellite or the mode of vibration coupling to the micro-jitter from the on-board appendages. Previously, an additional damper system was applied to reduce the elastic vibration of the solar panel, but the increase in size and mass of system was inevitable. In this study, to overcome the abovementioned limitations, we proposed a high -damping yoke structure consisting of a superplastic SMA(Shape Memory Alloy) laminating a thin FR4 layer with viscoelastic tape on both sides. Therefore, this advantage contributes to system simplicity by reducing vibrations with small volume and mass without additional system. The effectiveness of the proposed superelastic SMA multilayer solar panel yoke was validated through free vibration testing and temperature testing using a solar panel dummy.

Hyperparameter Optimization and Data Augmentation of Artificial Neural Networks for Prediction of Ammonia Emission Amount from Field-applied Manure (토양에 살포된 축산 분뇨로부터 암모니아 방출량 예측을 위한 인공신경망의 초매개변수 최적화와 데이터 증식)

  • Pyeong-Gon Jung;Young-Il Lim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.123-141
    • /
    • 2023
  • A sufficient amount of data with quality is needed for training artificial neural networks (ANNs). However, developing ANN models with a small amount of data often appears in engineering fields. This paper presented an ANN model to improve prediction performance of the ammonia emission amount with 83 data. The ammonia emission rate included eleven inputs and two outputs (maximum ammonia loss, Nmax and time to reach half of Nmax, Km). Categorical input variables were transformed into multi-dimensional equal-distance variables, and 13 data were added into 66 training data using a generative adversarial network. Hyperparameters (number of layers, number of neurons, and activation function) of ANN were optimized using Gaussian process. Using 17 test data, the previous ANN model (Lim et al., 2007) showed the mean absolute error (MAE) of Km and Nmax to 0.0668 and 0.1860, respectively. The present ANN outperformed the previous model, reducing MAE by 38% and 56%.

Experimental study on behavior of the existing tunnel due to adjacent slope excavation in a jointed rock mass (절리암반에서의 근접사면굴착에 의한 기존터널 거동에 대한 실험적 연구)

  • Lee, Jin-Wook;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • When a rock slope is excavated adjacent to a existing tunnel, the behavior of the existing tunnel in the jointed rock masses is greatly influenced by the joint conditions and slope status. In this study, the effects of joint dip and slope angle close to a tunnel are investigated through a large scale model using a biaxial test equipment ($3.1\;m\;{\times}\;3.1\;m\;{\times}\;0.50\;m$ (width $\times$ height $\times$ length)). The jointed rock masses were built by concrete blocks. The diameter of the modeled tunnel is 0.6 m and the dip angles of joint vary in the range of $0-90^{\circ}$. In addition, the excavated slope angle varies within $30{\sim}90^{\circ}$. Deformational behaviors of the tunnel were analyzed in consideration of joint dip and slope angle. With increase of the joint dip and slope angle, the magnitude of tunnel distortion and the moment of tunnel lining were increased. Rock mass displacement in horizontal was also dependent on the joint dip and the excavated slope angle, which indicated the optimal slope reinforcement for a specific rock mass conditions.

Study on Discovery of Vulnerable Factors in Road Tunnels through AHP Analysis (AHP분석을 통한 도로터널의 취약요소 발굴에 관한 연구)

  • Seong-Kyu Yun;Gichun Kang
    • Land and Housing Review
    • /
    • v.15 no.3
    • /
    • pp.177-188
    • /
    • 2024
  • This study aims to identify vulnerability factors through comprehensive safety diagnosis and to seek improvement measures for the safety and maintenance of facilities. In this study, the results of road tunnel inspections and diagnostics were converted into a database (DB). Using this data, we explored to identify vulnerable elements (NATM, ASSM) based on structural types and to develop efficient improvement measures. In this study, we analyzed 76 detailed safety diagnosis reports covering 45 different types of road tunnel facilities. In the detailed guidelines for comprehensive safety diagnosis, the database (DB) items for identifying vulnerable factors were selected by categorizing the basic information, such as the year of completion and damage items. In addition, AHP analysis was conducted separately through experts in related fields to analyze the correlation between damages. As a result, the primary vulnerability factors for NATM and ASSM were identified as cracks, leaks, insufficient lining thickness, and joint rear. ASSM was identified as relatively more susceptible to network cracks and material separation compared to NATM. In contrast, flaking and rebar exposure were interpreted as more significant vulnerabilities for NATM than for ASSM. In addition, the correlation between elements in NATM was found to be low, whereas in ASSM, the correlation between elements was high, indicating a more organic relationship.